

BIRD'S ELECTRICAL CIRCUIT THEORY AND TECHNOLOGY

SEVENTH EDITION

What skills are needed for a career in electrical and electronic engineering?

When you decide to become an electrical or electronic engineer, you're committing yourself to a profession that involves developing, designing, testing and supervising the manufacturing of electrical devices and equipment, including navigation systems, electric motors and power generation equipment. Therefore, to be able to handle such complex concepts and theories, and understand how to apply them to real-life projects, you need to possess a unique and tailored skillset. Indeed, it's no secret that a high proportion of engineering students drop out or change course, with a lack of preparedness often cited as the biggest reason for this unusually high attrition rate.

So, to see if you have what it takes to stay the course and develop a promising career in the field, here are the top 10 electrical and electronic engineering skills that you will need.

1. Problem-Solving Skills

Regardless of their discipline, engineers are, at their core, problem-solvers. This is particularly true in electrical and electronic engineering, where you are often required to think logically and apply a particular rule or concept to a problem in order to solve it.

2. Basic Circuit Knowledge

Electrical design can become an extraordinarily complex topic, especially where large installations are concerned (such as energy grids), or even within highly advanced pieces of small hardware, such as those used in smartphones. Therefore, if you are to have any hopes of getting to grips with it all, you need to first have a solid understanding of basic circuit design.

Sunshine Seeds/Shutterstock.com

3. Enthusiasm for Learning

Although it is an essential and unavoidable step, having a degree or a high qualification is not the end of the educational road for an electrical/electronic engineer; in fact, it is just the beginning of your active learning journey. Much of this is borne out of necessity. Electrical and electronic engineering is one of the fastest evolving and fiercely competitive engineering fields, so you will need to be constantly up to date (for example, with IEE wiring regs, and particularly if you work in the product design and manufacturing sector).

4. Communication Skills

There is barely a profession in the world where the ability to communicate is not important, and electrical and electronic engineering is no different. Whether it's understanding the needs and requirements of a client, working within project teams to develop or improve a piece of hardware/software, or working with other departments and stakeholders, communication skills are an essential part of the role.

5. Organisational Skills

The ability to organise and manage your time is important for an electrical/electronic engineer, as much of your work will likely be time-sensitive or project-based, regardless of which area of engineering you specialise in.

6. Numerical Skills

A common issue for electrical and electronic engineering students is that their mathematical background is not strong enough. Therefore, it is important to focus on mathematics at college or university. Understanding engineering is extremely difficult without a good knowledge of mathematics.

7. Work Ethic

A strong work ethic is another hugely important part of a successful engineer's makeup. Therefore, you must be determined and willing to work until you find a solution to whatever technical problems you encounter in your role.

8. Critical Thinking Skills

Critical thinking is a broad skill that can be applied to a wide array of situations, but it is just as important in electrical and electronic engineering. Possessing the ability to approach things differently or take a different view to the norm can make a big difference when you are trying to achieve a certain goal with your project.

9. Creative Thinking Skills

Engineers are not just problem-solvers - they are pioneers. Whether it's on a grand scale or a simple one, the solutions they provide change the way we live; therefore, to be able to explore and implement such radical ideas, you need to be able to think 'outside the box'. This is especially true in the commercial sector, where electronics giants are constantly competing to develop new and exciting technologies. You can have all the knowledge in the world, but if you don't know how to be creative and explore new possibilities with it, then you're going to be left behind.

10. Programming Skills

Although the importance of programming is higher in some areas of electrical and electronic engineering than others, it is still a very useful skill to possess, particularly when working with low-level embedded systems or when analysing data.

Gorodenkoff/Shutterstock.com

As you can see, the career of an electrical/electronic engineer is demanding. Apart from possessing the requisite technical knowledge, it is also mandatory for you to incorporate other key soft skills into your employability repertoire, such as decision-making, leadership and attention to detail. The rewards are high though, with electrical and electronic engineering one of the highest-paying sectors in the industry.

Hopefully, Bird's Electrical Circuit Theory and Technology will help you on your first important steps in a long career in electrical and/or electronic engineering.

There is a lot to learn; stay with it - it will be worth it.

Bird's Electrical Circuit Theory and Technology

Now in its seventh edition, *Bird's Electrical Circuit Theory and Technology* explains electrical circuit theory and associated technology topics in a straightforward manner, supported by practical engineering examples and applications to ensure that readers can relate theory to practice.

The extensive and thorough coverage, containing over 800 worked examples, makes this an excellent text for a range of courses, in particular for Degree and Foundation Degree in electrical principles, circuit theory, telecommunications, and electrical technology. The text includes some essential mathematics revision, together with all the essential electrical and electronic principles for BTEC National and Diploma syllabuses and City & Guilds Technician Certificate and Diploma syllabuses in engineering. This material will be a great revision for those on higher courses.

This edition includes several new sections, including glass batteries, climate change, the future of electricity production and discussions concerning everyday aspects of electricity, such as watts and lumens, electrical safety, AC vs DC, and trending technologies.

Its companion website at **www.routledge.com/cw/bird** provides resources for both students and lecturers, including full solutions for all 1400 further questions, lists of essential formulae, and illustrations, as well as full solutions to revision tests for course instructors.

John Bird, BSc (Hons), CEng, CMath, CSci, FIMA, FIET, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth with Examiner responsibilities for Advanced Mathematics with City & Guilds and examining for the International Baccalaureate Organisation. He has over 45 years' experience of successfully teaching, lecturing, instructing, training, educating, and planning trainee engineers' study programmes. He is the author of 146 textbooks on engineering, science and mathematical subjects, with worldwide sales of over one million copies. He is a chartered engineer, a chartered mathematician, a chartered scientist and a Fellow of three professional institutions. He has recently retired from lecturing at the Royal Navy's Defence College of Marine Engineering in the Defence College of Technical Training at H.M.S. Sultan, Gosport, Hampshire, UK, one of the largest engineering training establishments in Europe.

Besides this text, *Electrical Circuit Theory and Technology 7th Edition*, other books written by John Bird, and published by Routledge, include:

- Bird's Basic Engineering Mathematics 8th Edition
- Bird's Engineering Mathematics 9th Edition
- Bird's Higher Engineering Mathematics 9th Edition
- Bird's Comprehensive Engineering Mathematics 2nd Edition
- Mathematics Pocket Book for Engineers and Scientists 5th Edition
- Bird's Electrical and Electronic Principles and Technology 7th Edition
- Science and Mathematics for Engineering 6th Edition
- Mechanical Engineering Principles 4th Edition
- Mechanics of Solids 3rd Edition

Bird's Electrical Circuit Theory and Technology

Seventh Edition

John Bird

Seventh edition published 2022 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

and by Routledge 605 Third Avenue, New York, NY 10158

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2022 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 1997 Sixth edition published by Routledge 2017

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Bird, J. O., author Title: Bird's electrical circuit theory and technology / John Bird. Other titles: Electrical circuit theory and technology Description: Seventh. | New York : Routledge, 2021. | Includes index. Identifiers: LCCN 2021003948 (print) | LCCN 2021003949 (ebook) | ISBN 9780367672249 (hbk) | ISBN 9780367672225 (pbk) | ISBN 9781003130338 (ebk) Subjects: LCSH: Electric circuits. | Electrical engineering. Classification: LCC TK454 .B48 2021 (print) | LCC TK454 (ebook) | DDC 621.319/2–dc23 LC record available at https://lccn.loc.gov/2021003948 LC ebook record available at https://lccn.loc.gov/2021003949

ISBN: 978-0-367-67224-9 (hbk) ISBN: 978-0-367-67222-5 (pbk) ISBN: 978-1-003-13033-8 (ebk)

Typeset in Times by KnowledgeWorks Global Ltd.

Access the companion website: www.routledge.com/cw/bird

In Memory of Elizabeth

Contents

Preface

S	ection	1 Revision of some basic mathematics	1
1	Some m	nathematics revision	3
	1.1	Use of calculator and evaluating formulae	4
	1.2	Fractions	7
	1.3	Percentages	8
	1.4	Ratio and proportion	10
	1.5	Laws of indices	13
	1.6	Brackets	16
	1.7	Solving simple equations	16
	1.8	Transposing formulae	19
	1.9	Solving simultaneous equations	21
2	Further	r mathematics revision	23
	2.1	Radians and degrees	24
	2.2	Measurement of angles	25
	2.3	Trigonometry revision	26
	2.4	Logarithms and exponentials	28
	2.5	Straight line graphs	33
	2.6	Gradients, intercepts and equation	
		of a graph	35
	2.7	Practical straight line graphs	37
	2.8	Calculating areas of common shapes	38

xvi

44

Main formulae for Section 1 Revision of some basic mathematics

Basic electrical engineering Section 2 principles **47** 3 Units associated with basic electrical 49 quantities 3.1 49 SI units 3.2 Charge 50 3.3 50 Force 3.4 Work 51 3.5 Power 52 3.6 Electrical potential and e.m.f. 53 53 3.7 Resistance and conductance 3.8 Electrical power and energy 54 3.9 Summary of terms, units and their symbols 55

4	An intr	oduction to electric circuits	56
	4.1	Standard symbols for electrical	
		components	57
	4.2	Electric current and quantity of	
		electricity	57
	4.3	Potential difference and resistance	58
	4.4	Basic electrical measuring instruments	58
	4.5	Linear and non-linear devices	59
	4.6	Ohm's law	59
	4.7	Multiples and sub-multiples	59
	4.8	Conductors and insulators	61
	4.9	Electrical power and energy	61
	4.10	Main effects of electric current	64
	4.11	Fuses	64
	4.12	Insulation and the dangers of constant	<i></i>
		high current flow	65
	Practica	al laboratory experiment: Ohm's law	66
	Which	light bulb to choose? Watts or lumens!	68
5	Resista	nce variation	70
	5.1	Resistor construction	71
	5.2	Resistance and resistivity	71
	5.3	Temperature coefficient of resistance	73
	5.4	Resistor colour coding and ohmic values	75
6	Batteri	es and alternative sources of energy	78
	6.1	Introduction to batteries	79
	6.2	Some chemical effects of electricity	79
	6.3	The simple cell	80
	6.4	Corrosion	81
	6.5	e.m.f. and internal resistance of a cell	81
	6.6	Primary cells	83
	6.7	Secondary cells	84
	6.8	Lithium-ion batteries	86
	6.9	Cell capacity	89
	6.10	Safe disposal of batteries	89
	6.11	Fuel cells	89
	6.12	Alternative and renewable energy sources	90
	6.13	Solar energy	91
	6.14	Glass batteries	93
	Revisio	n Test 1	94

What uses the most energy in your home?

95

7	Sorios	and norallal notworks	06
'	7 1	Series circuits	90
	7.1	Potential divider	98
	7.2	Parallel networks	100
	7.5	Current division	100
	7.5	Loading effect	102
	7.6	Potentiometers and rheostats	105
	7.0	Relative and absolute voltages	100
	7.8	Farth potential and short circuits	110
	7.9	Wiring lamps in series and in parallel	110
			110
	Practica	al laboratory experiment:	
	Series-p	parallel d.c. circuit	112
8	Capaci	tors and capacitance	114
	8.1	Introduction to capacitors	115
	8.2	Electrostatic field	115
	8.3	Electric field strength	116
	8.4	Capacitance	116
	8.5	Capacitors	117
	8.6	Electric flux density	117
	8.7	Permittivity	118
	8.8	The parallel plate capacitor	119
	8.9	Capacitors connected in parallel	
		and series	120
	8.10	Dielectric strength	124
	8.11	Energy stored	124
	8.12	Practical types of capacitor	125
	8.13	Supercapacitors	127
	8.14	Discharging capacitors	128
9	Magnet	tic circuits	129
	9.1	Introduction to magnetism and	
		magnetic circuits	130
	9.2	Magnetic fields	131
	9.3	Magnetic flux and flux density	132
	9.4	Magnetomotive force and magnetic	
		field strength	132
	9.5	Permeability and <i>B</i> – <i>H</i> curves	133
	9.6	Reluctance	134
	9.7	Composite series magnetic circuits	136
	9.8	Comparison between electrical and	
		magnetic quantities	139
	9.9	Hysteresis and hysteresis loss	139
	Revisio	n Test 2	141
	Some in	nteresting facts about electricity	142
10	Electro	magnetism	144
	10.1	Magnetic field due to an electric current	145
	10.2	Electromagnets	146
	10.3	Force on a current-carrying conductor	148

	10.4	Principle of operation of a simple	
		d.c. motor	151
	10.5	Principle of operation of a moving-coil	
		instrument	152
	10.6	Force on a charge	152
1	1 Electron	magnetic induction	154
	11.1	Introduction to electromagnetic induction	155
	11.2	Laws of electromagnetic induction	156
	11.3	Rotation of a loop in a magnetic field	159
	11.4	Inductance	160
	11.5	Inductors	161
	11.6	Energy stored	162
	11.7	Inductance of a coil	162
	11.8	Mutual inductance	164
1	2 Electric	al measuring instruments and	
	measur	ements	167
	12.1	Introduction	168
	12.2	Analogue instruments	168
	12.3	Shunts and multipliers	168
	12.4	Electronic instruments	170
	12.5	The ohmmeter	170
	12.6	Multimeters	171
	12.7	Wattmeters	171
	12.8	Instrument 'loading' effect	171
	12.9	The oscilloscope	173
	12.10	Virtual test and measuring instruments	178
	12.11	Virtual digital storage oscilloscopes	179
	12.12	Waveform harmonics	182
	12.13	Logarithmic ratios	183
	12.14	Null method of measurement	185
	12.15	Wheatstone bridge	186
	12.16	d.c. potentiometer	186
	12.17	a.c. bridges	187
	12.18	Measurement errors	188
	Where i	s energy wasted in the home?	191

13	Semicor	nductor diodes	193
	13.1	Types of material	194
	13.2	Semiconductor materials	194
	13.3	Conduction in semiconductor materials	196
	13.4	The p–n junction	196
	13.5	Forward and reverse bias	197
	13.6	Semiconductor diodes	200
	13.7	Characteristics and maximum ratings	201
	13.8	Rectification	201
	13.9	Zener diodes	201
	13.10	Silicon controlled rectifiers	203
	13.11	Light emitting diodes	204
	13.12	Varactor diodes	204
	13.13	Schottky diodes	204

Contents xi

14	Transist	tors	206
	14.1	Transistor classification	207
	14.2	Bipolar junction transistors (BJTs)	207
	14.3	Transistor action	208
	14.4	Leakage current	209
	14.5	Bias and current flow	210
	14.6	Transistor operating configurations	210
	14.7	Bipolar transistor characteristics	211
	14.8	Transistor parameters	212
	14.9	Current gain	213
	14.10	Typical BJT characteristics and	
		maximum ratings	214
	14.11	Field effect transistors	215
	14.12	Field effect transistor characteristics	216
	14.13	Typical FET characteristics and	
		maximum ratings	217
	14.14	Transistor amplifiers	217
	14.15	Load lines	219
	Revision	a Test 3	224

Main formulae for Section 2 Basic electrical	
and electronic principles	226

Electrical safety is essential – electricity KILLS ...!

Section 3	Electrical principles and	
	technology	229
15 d.c. circ	uit theory	23
15.1	Introduction	23
15.2	Kirchhoff's laws	232
15.3	The superposition theorem	230
15.4	General d.c. circuit theory	238
15.5	Thévenin's theorem	240
15.6	Constant-current source	24:
15.7	Norton's theorem	24:
15.8	Thévenin and Norton equivalent networks	248
15.9	Maximum power transfer theorem	25

Superposition theorem	2
Practical laboratory experiment: Thévenin's	
theorem	2

- 16.1 Introduction
- 16.2 The a.c. generator

	16.3	Waveforms	262
	16.4	a.c. values	263
	16.5	Electrical safety – insulation and fuses	266
	16.6	The equation of a sinusoidal waveform	266
	16.7	Combination of waveforms	269
	16.8	Rectification	272
	16.9	Smoothing of the rectified output wavefo	rm 273
	Practica	al laboratory experiment: Use of an	
	oscinose	cope to measure voltage, frequency and	
	phase		275
_			
	Practica	al laboratory experiment: Use of an	
	oscilloso	cope with a bridge rectifier circuit	277
_			
	Revision	n Test 4	278
	Electric	shock!	279
17	Single-p	phase series a.c. circuits	281
	17.1	Purely resistive a.c. circuit	282
	17.2	Purely inductive a.c. circuit	282
	17.3	Purely capacitive a.c. circuit	283
	17.4	R-L series a.c. circuit	284
	17.5	R-C series a.c. circuit	287
	17.6	R-L-C series a.c. circuit	289
	17.7	Series resonance	292
	17.8	Q-factor	293
	17.9	Bandwidth and selectivity	295
	17.10	Power in a.c. circuits	295
	17.11	Power triangle and power factor	296
	Practica	al laboratory experiment:	
	Measur	ement of the inductance of a coil	299
	Practica	al laboratory experiment: Series a.c.	
	circuit a	and resonance	301
18	Single-r	phase parallel a.c. circuits	303
10	18.1	Introduction	304
	18.2	<i>R</i> – <i>L</i> parallel a.c. circuit	304
		*	

18.3 *R*–*C* parallel a.c. circuit

18.4 *L*–*C* parallel a.c. circuit

18.5 *LR*–*C* parallel a.c. circuit

18.7 Power factor improvement

18.6 Parallel resonance and Q-factor

xii Contents

Practica circuit a	l laboratory experiment: Parallel a.c. nd resonance	320
Why are	e relays so important in electrical	
circuits	?	322
9 d.c. trai	nsients	32
19.1	Introduction	32
19.2	Charging a capacitor	32
19.3	Time constant for a <i>C</i> – <i>R</i> circuit	32
19.4	Transient curves for a <i>C</i> – <i>R</i> circuit	32
19.5	Discharging a capacitor	33
19.6	Camera flash	33
19.7	Current growth in an <i>L</i> – <i>R</i> circuit	33
19.8	Time constant for an <i>L</i> – <i>R</i> circuit	33
19.9	Transient curves for an <i>L</i> – <i>R</i> circuit	33
19.10	Current decay in an L-R circuit	33
19.11	Switching inductive circuits	33
19.12	The effect of time constant on a	
	rectangular waveform	33
Practica	l laboratory experiment: Charging	
and disc	harging a capacitor	339
0 Operati	onal amplifiers	34
20.1	Some on amp perameters	24
20.2	On amp inverting amplifier	24
20.3	On amp non inverting amplifier	24
20.4	Op amp voltage follower	24
20.5	Op amp voltage-tonower	24
20.0	Op amp sulfing amplifier	24
20.7	Op amp voltage comparator	54 24
20.8	On any differential analifer	25
20.9	Di ich conterential amplifier	33
20.10	Digital to analogue (D/A) conversion	30
20.11	Analogue to digital (A/D) conversion	33
Revision	1 Test 5	354
Are you	competent to do electrical work?	355
1 Global	climate change and the future of	
electr	Later destion	35
21.1	Clobal alimeta abanza	33 25
21.2	Enidonea of mail alimeter 1	30
21.3	Evidence of rapid climate change	30
21.4	Use does cleatric many and dust:	33
21.5	How does electric power production	26
	anect the global chimate?	30
	the second s	

	21.7	Generating electrical power using oil	362
	21.8	Generating electrical power using	
		natural gas	363
	21.9	Generating electrical power using	
		nuclear energy	364
	21.10	Generating electrical power using hydro	
		power	366
	21.11	Generating electrical power using	
		pumped storage	367
	21.12	Generating electrical power using wind	368
	21.13	Generating electrical power using tidal	
		power	368
	21.14	Generating electrical power using biomass	369
	21.15	Generating electrical power using solar	270
		energy	370
	21.16	Harnessing the power of wind, tide and	
		sun on an 'energy island' – a tuture	271
		possibility:	571
22	Three-p	hase systems	373
	22.1	Introduction	374
	22.2	Three-phase supply	374
	22.3	Star connection	374
	22.4	Delta connection	378
	22.5	Power in three-phase systems	379
	22.6	Measurement of power in three-phase	
		systems	381
	22.7	Comparison of star and delta connections	386
	22.8	Advantages of three-phase systems	386
23	Transfo	rmers	389
	23.1	Introduction	390
	23.2	Transformer principle of operation	390
	23.3	Transformer no-load phasor diagram	392
	23.4	e.m.f. equation of a transformer	394
	23.5	Transformer on-load phasor diagram	396
	23.6	Transformer construction	397
	23.7	Equivalent circuit of a transformer	398
	23.8	Regulation of a transformer	399
	23.9	Transformer losses and efficiency	400

23.1	Introduction	390
23.2	Transformer principle of operation	390
23.3	Transformer no-load phasor diagram	392
23.4	e.m.f. equation of a transformer	394
23.5	Transformer on-load phasor diagram	396
23.6	Transformer construction	397
23.7	Equivalent circuit of a transformer	398
23.8	Regulation of a transformer	399
23.9	Transformer losses and efficiency	400
23.10	Resistance matching	403
23.11	Auto transformers	405
23.12	Isolating transformers	407
23.13	Three-phase transformers	407
23.14	Current transformers	408
23.15	Voltage transformers	409

Revision Test 6

410

What is the difference between <i>electrical</i> and	
electronic devices?	411

24	d.c. mad	chines	412
	24.1	Introduction	413
	24.2	The action of a commutator	413
	24.3	d.c. machine construction	414
	24.4	Shunt, series and compound windings	414
	24.5	e.m.f. generated in an armature winding	415
	24.6	d.c. generators	416
	24.7	Types of d.c. generator and their	417
	24.9		417
	24.8	d.c. machine losses	421
	24.9	Efficiency of a d.c. generator	421
	24.10	d.c. motors	422
	24.11	lorque of a d.c. machine	423
	24.12	lypes of d.c. motor and their	424
	24.12	The effective of a discussion	424
	24.15	The efficiency of a d.c. motor	428
	24.14	u.c. motor starter	430
	24.15	Speed control of d.c. motors	431
	24.10	worder cooming	455
25	Three-p	hase induction motors	434
	25.1	Introduction	435
	25.2	Production of a rotating magnetic field	435
	25.3	Synchronous speed	437
	25.4	Construction of a three-phase induction	
		motor	438
	25.5	Principle of operation of a three-phase	
		induction motor	438
	25.6	Slip	439
	25.7	Rotor e.m.f. and frequency	440
	25.8	Rotor impedance and current	441
	25.9	Rotor copper loss	441
	25.10	Induction motor losses and efficiency	442
	25.11	Torque equation for an induction motor	443
	25.12	Induction motor torque-speed	
		characteristics	445
	25.13	Starting methods for induction motors	446

characteristics	445
25.13 Starting methods for induction motors	446
25.14 Advantages of squirrel-cage induction	
motors	447
25.15 Advantages of wound rotor induction	
motor	448
25.16 Double cage induction motor	448
25.17 Uses of three-phase induction motors	448
Revision Test 7	449
Main formulae for Section 3 Electrical principles and technology	450

What	does a	n engineer do?	45
What	does a	n engineer do?	4

S	ection 4	Advanced circuit theory and technology	457
26	Revisio	1 of complex numbers	459
	26.1	Introduction	459
	26.2	Operations involving Cartesian complex	
		numbers	461
	26.3	Complex equations	463
	26.4	The polar form of a complex number	464
	26.5	Multiplication and division using	
		complex numbers in polar form	465
	26.6	De Moivre's theorem – powers and roots of complex numbers	467
27	Applica	tion of complex numbers to series	
	a.c. circ	uits	470
	27.1	Introduction	470
	27.2	Series a.c. circuits	471
	27.3	Further worked problems on series	
		a.c. circuits	477
28	Applica	tion of complex numbers to parallel	
	a.c. netv	vorks	482
	28.1	Introduction	482
	28.2	Admittance, conductance and susceptance	483
	28.5	Further worked methods on perallel	484
	28.4	a.c. networks	488
29	Power in	n a.c. circuits	491
_	29.1	Introduction	491
	29.2	Determination of power in a.c. circuits	492
	29.3	Power triangle and power factor	494
	29.4	Use of complex numbers for	
		determination of power	495
	29.5	Power factor improvement	499
	Revision	ı Test 8	504
	The war	of the currents: AC v DC	505
30	a e brid	1765	507
50	30.1	Introduction	507
	30.2	Balance conditions for an a.c. bridge	507
	30.3	Types of a.c. bridge circuit	509
	30.4	Worked problems on a.c. bridges	513
31	Series r	esonance and Q-factor	517
	31.1	Introduction	518
	31.2	Series resonance	518
	31.3	Q-tactor	520
	31.4	Voltage magnification	522
	31.5	Q-factors in series	524

xiv Contents

31.6	Bandwidth	525
31.7	Small deviations from the resonant	
	frequency	529
32 Parallel	resonance and Q-factor	532
32.1	Introduction	532
32.2	The <i>LR</i> – <i>C</i> parallel network	533
32.3	Dynamic resistance	534
32.4	The <i>LR</i> – <i>CR</i> parallel network	534
32.5	Q-factor in a parallel network	535
32.6	Further worked problems on parallel resonance and Q-factor	539
Revisio	n Test 9	542
What ev	veryday items in the home use motors?	543
33 Introdu	ction to network analysis	544
33.1	Introduction	544
33.2	Solution of simultaneous equations	
	using determinants	545
33.3	Network analysis using Kirchhoff's laws	547
34 Mesh-c	urrent and nodal analysis	554
34.1	Mesh-current analysis	554
34.2	Nodal analysis	558
35 The sup	perposition theorem	565
35.1	Introduction	565
35.2	Using the superposition theorem	565
35.3	Further worked problems on the	
	superposition theorem	570
36 Théven	in's and Norton's theorems	575
36.1	Introduction	575
36.2	Thévenin's theorem	576
36.3	Further worked problems on Thévenin's	582
36.4	Norton's theorem	586
36.5	Thévenin and Norton equivalent networks	593
Revision	n Test 10	598
How do	es a car electrical system work?	599

37	Delta-s	tar and star-delta transformations	601
	37.1	Introduction	601
	37.2	Delta and star connections	601
	37.3	Delta-star transformation	602
	37.4	Star-delta transformation	610
38	Maxim	um power transfer theorems and	
	impeda	nce matching	614
	38.1	Maximum power transfer theorems	615
	38.2	Impedance matching	620

	Revision	n Test 11	623
	HSE and	d electrical safety	624
39	Comple	x waveforms	626
	39.1	Introduction	627
	39.2	The general equation for a complex	
		waveform	627
	39.3	Harmonic synthesis	628
	39.4	Fourier series of periodic and	
		non-periodic functions	636
	39.5	Even and odd functions and Fourier	(11
	20.6	series over any range	641
	39.6	r.m.s. value, mean value and the form	645
	30.7	Power associated with complex waves	649
	39.7	Harmonics in single phase circuits	650
	39.0	Further worked problems on harmonics	050
	39.9	in single-phase circuits	653
	39.10	Resonance due to harmonics	657
	39.11	Sources of harmonics	659
40	A nume	rical method of harmonic analysis	663
••	40.1	Introduction	663
	40.2	Harmonic analysis on data given in	
		tabular or graphical form	663
	40.3	Complex waveform considerations	667
41	Magnet	ic materials	670
	41.1	Revision of terms and units used with	
		magnetic circuits	671
	41.2	Magnetic properties of materials	672
	41.3	Hysteresis and hysteresis loss	673
	41.4	Eddy current loss	677
	41.5	Separation of hysteresis and eddy	
		current losses	680
	41.6	Non-permanent magnetic materials	682
	41.7	Permanent magnetic materials	684
	Revision	n Test 12	685

That is circle optacing.	What is	electroplating?	
--------------------------	---------	-----------------	--

42	42 Dielectrics and dielectric loss		688
	42.1	Electric fields, capacitance and permittivity	688
	42.2	Polarisation	689
	42.3	Dielectric strength	689
	42.4	Thermal effects	690
	42.5	Mechanical properties	691
	42.6	Types of practical capacitor	691
	42.7	Liquid dielectrics and gas insulation	691
	42.8	Dielectric loss and loss angle	691

43 Field theory

Field th	eory	695
43.1	Field plotting by curvilinear squares	696
43.2	Capacitance between concentric cylinders	699
43.3	Capacitance of an isolated twin line	704
43.4	Energy stored in an electric field	707
43.5	Induced e.m.f. and inductance	709
43.6	Inductance of a concentric cylinder (or coaxial cable)	709
43.7	Inductance of an isolated twin line	712
43.8	Energy stored in an electromagnetic field	715
Attenua	tors	718
44.1	Introduction	719
44.2	Characteristic impedance	719
44.3	Logarithmic ratios	721
44.4	Symmetrical T- and π -attenuators	723
44.5	Insertion loss	728
44.6	Asymmetrical T- and π -sections	731
44.7	The L-section attenuator	734
44.8	Two-port networks in cascade	736
44.9	ABCD parameters	739
44.10	ABCD parameters for networks	742
44.11	Characteristic impedance in terms of	
	ABCD parameters	748
Revision Test 13 7:		

Could we live without electricity?

45 Filter networks

	45.1	Introduction	753
	45.2	Basic types of filter sections	754
	45.3	The characteristic impedance and the	
		attenuation of filter sections	756
	45.4	Ladder networks	757
	45.5	Low-pass filter sections	758
	45.6	High-pass filter sections	764
	45.7	Propagation coefficient and time delay in	
		filter sections	769
	45.8	'm-derived' filter sections	775
	45.9	Practical composite filters	780
46	Magnet	tically coupled circuits	783
	46.1	Introduction	783
	46.2	Self-inductance	783
	46.3	Mutual inductance	784
	46.4	Coupling coefficient	785
	46.5	Coils connected in series	786
	46.6	Coupled circuits	789
	46.7	Dot rule for coupled circuits	794

47	Transn	nission lines	801
	47.1	Introduction	801
	47.2	Transmission line primary constants	802
	47.3	Phase delay, wavelength and velocity of	
		propagation	803
	47.4	Current and voltage relationships	804
	47.5	Characteristic impedance and	
		propagation coefficient in terms of the	
		primary constants	806
	47.6	Distortion on transmission lines	810
	47.7	Wave reflection and the reflection	
		coefficient	812
	47.8	Standing-waves and the standing-wave	
		ratio	815
48	Transie	ents and Laplace transforms	820
	48.1	Introduction	821
	48.2	Response of <i>R</i> – <i>C</i> series circuit to a step	
		input	821
	48.3	Response of <i>R</i> – <i>L</i> series circuit to a step	
		input	823
	48.4	L-R-C series circuit response	826
	48.5	Introduction to Laplace transforms	829
	48.6	Inverse Laplace transforms and the	
		solution of differential equations	834
	48.7	Laplace transform analysis directly from	
		the circuit diagram	839
	48.8	L-R-C series circuit using Laplace	
		transforms	849
	48.9	Initial conditions	852
	Revisio	n Test 14	856

Main formulae for Section 4 Advanced circuit theory and technology

|--|

Section 5 **General reference Standard electrical quantities – their symbols** and units **Greek alphabet Common prefixes** Resistor colour coding and ohmic values **Future technology snippets Answers to Practice Exercises** Index

Preface

Bird's Electrical Circuit Theory and Technology 7th *Edition* provides coverage for a wide range of courses that contain electrical principles, circuit theory and technology in their syllabuses, from **Introductory to Degree level** - and including Edexcel BTEC Levels 2 to 5 National Certificate/Diploma, Higher National Certificate/Diploma and Foundation Degrees in Engineering

In this new seventh edition, **new material added** includes mention of the vast topic of global climate change and the future of electricity production, the development of glass batteries, and some practical laboratory experiments have been added at appropriate places in the text, along with other minor additions and modifications. The text is essentially, as the title suggests, all about *electrical circuit theory*, and to add too many practical descriptions would have unduly increased its extent. However, a number of associated electrical topics, hopefully of interest and help to readers, have been added, each on one or two pages, some with photographs, adding practical, everyday aspects of electricity, showing how the principles and theory explained in the text are commonly used.

The text is set out in **five sections** as follows:

SECTION 1, comprising chapters 1 and 2, involves **Revision of some basic mathematics** needed for electrical and electronic principles and in general engineering.

SECTION 2, involving chapters 3 to 14, contains 'Basic electrical engineering principles' which any student wishing to progress in electrical engineering would need to know. An introduction to units, electrical circuits, resistance variation, batteries and alternative sources of energy, series and parallel circuits, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductor diodes and transistors are all included in this section.

SECTION 3, involving chapters 15 to 25, contains 'Electrical principles and technology' suitable as a

lead-in to Degree studies, and suitable for National Certificate, National Diploma and City & Guilds courses in electrical and electronic engineering. Direct current circuit theory, alternating voltages and currents, single-phase series and parallel circuits, d.c. transients, operational amplifiers, global climate change and the future of electricity production, three-phase systems, transformers, d.c. machines and three-phase induction motors are all included in this section.

SECTION 4, involving chapters 26 to 48, contains **'Advanced circuit theory and technology'** suitable for Degree, Foundation degree, Higher National Certificate/Diploma and City & Guilds courses in electrical and electronic/telecommunications engineering. The three earlier sections of the book will provide a valuable reference/revision for students at this level.

Complex numbers and their application to series and parallel networks, power in a.c. circuits, a.c. bridges, series and parallel resonance and Q-factor, network analysis involving Kirchhoff's laws, mesh and nodal analysis, the superposition theorem, Thévenin's and Norton's theorems, delta-star and star-delta transforms, maximum power transfer theorems and impedance matching, complex waveforms, Fourier series, harmonic analysis, magnetic materials, dielectrics and dielectric loss, field theory, attenuators, filter networks, magnetically coupled circuits, transmission line theory and transients and Laplace transforms are all included in this section.

SECTION 5 provides a short, **'General reference'** for standard electrical quantities - their symbols and units, the Greek alphabet, common prefixes and resistor colour coding and ohmic values.

At the beginning of each of the 48 chapters a brief explanation as to why it is important to understand the material contained within that chapter is included, together with a list of **learning objectives**.

At the end of each of the first four sections of the text is a handy reference of the **main formulae** used. There are a number of internet downloads freely available to both students and lecturers/instructors at **www.routledge.com/cw/bird**; these are listed in the right-hand column on this page.

It is not possible to acquire a thorough understanding of electrical principles, circuit theory and technology without working through a large number of numerical problems. It is for this reason that *Bird's Electrical Circuit Theory and Technology* 7th *Edition* contains nearly **800 detailed worked problems**, together with some **1350 further problems (with answers at the back of the book)**, arranged within **205 Practice Exercises** that appear every few pages throughout the text. Some **1150 line diagrams** further enhance the understanding of the theory.

Fourteen Revision Tests have been included, interspersed within the text every few chapters. For example, Revision Test 1 tests understanding of chapters 3 to 6, Revision Test 2 tests understanding of chapters 7 to 9, Revision Test 3 tests understanding of chapters 10 to 14 and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Revision Tests for students to attempt as part of their course structure. Lecturers/ instructors may obtain a complimentary set of solutions of the Revision Tests in the **Instructor's Section** at **www.routledge.com/cw/bird**

'Learning by Example' is at the heart of *Bird's Electrical Circuit Theory and Technology* 7th *Edition.*

JOHN BIRD

Formerly Royal Naval Defence College of Marine Engineering, HMS Sultan, University of Portsmouth and Highbury College, Portsmouth

Free Web downloads

The following support material is available from http://www.routledge.com/cw/bird

For Students:

- 1. Full solutions to all 1350 further questions in the Practice Exercises
- 2. A set of formulae for each of the four sections of the text
- **3.** 68 multiple choice questions for the mathematics revision of chapters 1 and 2
- 4. Information on 38 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:

- 1-4. As per students 1-4 above
 - 5. Full solutions and marking scheme for each of the 14 Revision Tests; also, each test may be downloaded.
 - 6. All 1150 illustrations used in the text may be downloaded for use in PowerPoint presentations

Revision of some basic mathematics

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision

Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics - rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged. Using a calculator, evaluating formulae, manipulating fractions, understanding and performing calculations with percentages, appreciating ratios and direct and inverse proportion, understanding and using the laws of indices, expanding equations containing brackets, solving simple equations, transposing formulae and solving simultaneous equations are all important aspects of early mathematics that need to be revised.

Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.

In engineering calculations it is essential to have a **scientific notation calculator** which will have all the necessary functions needed, and more. This chapter assumes you have a **CASIO fx-991ES PLUS calculator**, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.

Check that you can use a calculator in the following Practice Exercise.

Practice Exercise 1 Use of calculator (Answers on page 881)

- 1. Evaluate 378.37 - 298.651 + 45.64 - 94.562
- 2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
- 3. Evaluate $\frac{(4.527 + 3.63)}{(452.51 \div 34.75)} + 0.468$ correct to 5 significant figures
- 4. Evaluate $52.34 \frac{(912.5 \div 41.46)}{(24.6 13.652)}$ correct to 3 decimal places
- 5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
- 6. Evaluate 6.85² correct to 3 decimal places
- 7. Evaluate $(0.036)^2$ in engineering form
- 8. Evaluate 1.3^3
- 9. Evaluate $(0.38)^3$ correct to 4 decimal places
- 10. Evaluate $(0.018)^3$ in engineering form
- 11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
- 12. Evaluate $\frac{1}{0.065} \frac{1}{2.341}$ correct to 4 significant figures

- 13. Evaluate 2.1⁴
- 14. Evaluate $(0.22)^5$ correct to 5 significant figures in engineering form
- 15. Evaluate $(1.012)^7$ correct to 4 decimal places
- 16. Evaluate $1.1^3 + 2.9^4 4.4^2$ correct to 4 significant figures
- 17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
- 18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
- 19. Evaluate $\sqrt[6]{2451} \sqrt[4]{46}$ correct to 3 decimal places

Express the answers to questions 20 to 23 in engineering form.

20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$

21. Evaluate
$$\frac{6 \times 10^3 \times 14 \times 10^{-4}}{2 \times 10^6}$$

- 22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
- 23. Evaluate $\frac{99 \times 10^5 \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4 significant figures
- 24. Evaluate $\frac{4}{5} \frac{1}{3}$ as a decimal, correct to 4 decimal places
- 25. Evaluate $\frac{2}{3} \frac{1}{6} + \frac{3}{7}$ as a fraction
- 26. Evaluate $2\frac{5}{6} + 1\frac{5}{8}$ as a decimal, correct to 4 significant figures
- 27. Evaluate $5\frac{6}{7} 3\frac{1}{8}$ as a decimal, correct to 4 significant figures
- 28. Evaluate $\frac{3}{4} \times \frac{4}{5} \frac{2}{3} \div \frac{4}{9}$ as a fraction
- 29. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number
- 30. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, correct to 3 decimal places

31. Evaluate $\frac{\left(4\frac{1}{5}-1\frac{2}{3}\right)}{\left(3\frac{1}{4}\times2\frac{3}{5}\right)}-\frac{2}{9}$ as a decimal,

correct to 3 significant figures

In questions 32 to 38, evaluate correct to 4 decimal places.

- 32. Evaluate sin 67°
- 33. Evaluate tan 71°
- 34. Evaluate cos 63.74°
- 35. Evaluate $\tan 39.55^\circ \sin 52.53^\circ$
- 36. Evaluate sin(0.437 rad)
- 37. Evaluate tan(5.673 rad)

38. Evaluate
$$\frac{(\sin 42.6^{\circ})(\tan 83.2^{\circ})}{12.00}$$

 $\cos 13.8^{\circ}$

In questions 39 to 45, evaluate correct to 4 significant figures.

39. 1.59π

40.
$$2.7(\pi - 1)$$

41.
$$\pi^2(\sqrt{13}-1)$$

42.
$$8.5e^{-2.5}$$

43. $3e^{(2\pi-1)}$

44.
$$\sqrt{\left[\frac{5.52\pi}{2e^{-2}\times\sqrt{2e}}\right]}$$

45.
$$\sqrt{\left[\frac{e^{(2-\sqrt{3})}}{\pi \times \sqrt{8}}\right]}$$

Evaluation of formulae

The statement $\mathbf{y} = \mathbf{mx} + \mathbf{c}$ is called a **formula** for y in terms of m, x and c.

.73

y, m, x and c are called **symbols**.

When given values of m, x and c we can evaluate y. There are a large number of formulae used in engineering and in this section we will insert numbers in place

of symbols to evaluate engineering quantities.

Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. V = IR. Find, correct to 4 significant figures, the voltage when I = 5.36 A and $R = 14.76 \Omega$

$$V = IR = I \times R = 5.36 \times 14.76$$

Hence, voltage V = 79.11 V, correct to 4 significant figures

Problem 2. Velocity v is given by v = u + at. If u = 9.54 m/s, a = 3.67 m/s² and t = 7.82 s, find v, correct to 3 significant figures.

$$v = u + at = 9.54 + 3.67 \times 7.82$$
$$= 9.54 + 28.6994 = 38.2394$$

Hence, velocity v = 38.2 m/s, correct to 3 significant figures

Problem 3. The area, A, of a circle is given by $A = \pi r^2$. Determine the area correct to 2 decimal places, given radius r = 5.23 m.

$$A = \pi r^2 = \pi (5.23)^2 = \pi (27.3529)$$

Hence, area, $A = 85.93 \text{ m}^2$, correct to 2 decimal places

Problem 4. Density $=\frac{\text{mass}}{\text{volume}}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \text{ m}^3$.

Density =
$$\frac{\text{mass}}{\text{volume}} = \frac{6.45 \text{ kg}}{300 \times 10^{-6} \text{ m}^3} = 21500 \text{ kg/m}^3$$

Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P = \frac{V^2}{R}$. Evaluate the power, correct to 4 significant figures, given that V = 230 V and $R = 35.63\Omega$

$$P = \frac{V^2}{R} = \frac{(230)^2}{35.63} = \frac{52900}{35.63} = 1484.70390..$$

Press ENG and $1.48470390..\times10^3$ appears on the screen

Hence, power, P = 1485 W or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, R Ω , varies with temperature according to the formula $R = R_0(1 + \alpha t)$. Evaluate R, correct to 3 significant figures, given $R_0 = 14.59$, $\alpha = 0.0043$ and t = 80

$$R = R_0(1 + \alpha t) = 14.59[1 + (0.0043)(80)]$$
$$= 14.59(1 + 0.344) = 14.59(1.344)$$

Hence, resistance, $\mathbf{R} = \mathbf{19.6} \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $I = \frac{V}{\sqrt{(R^2 + X^2)}}$ Evaluate the current, correct to 2 decimal places, when $V = 250 \text{ V}, R = 25.0 \Omega$ and $X = 18.0 \Omega$

$$I = \frac{V}{\sqrt{(R^2 + X^2)}} = \frac{250}{\sqrt{(25.0^2 + 18.0^2)}} = 8.11534341\dots$$

Hence, current, I = 8.12 A, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae (Answers on page 881)

- 1. The area A of a rectangle is given by the formula $A = l \times b$. Evaluate the area, correct to 2 decimal places, when l = 12.4 cm and b = 5.37 cm
- 2. The circumference C of a circle is given by the formula $C = 2\pi r$. Determine the circumference, correct to 2 decimal places, given r = 8.40 mm
- 3. A formula used in connection with gases is $R = \frac{PV}{T}$. Evaluate R when P = 1500, V = 5 and T = 200
- 4. The velocity of a body is given by v = u + at. The initial velocity u is measured when time t is 15 seconds and found to be 12 m/s. If the acceleration a is 9.81 m/s² calculate the final velocity v
- 5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when

I=V/R amperes when the voltage V is measured and found to be 7.2 V and the resistance R is 17.7 Ω

- 6. Find the distance s, given that $s = \frac{1}{2}gt^2$. Time t = 0.032 seconds and acceleration due to gravity g = 9.81 m/s². Give the answer in millimetres correct to 3 significant figures.
- 7. The energy stored in a capacitor is given by $E = \frac{1}{2}CV^2$ joules. Determine the energy when capacitance $C = 5 \times 10^{-6}$ farads and voltage V = 240 V
- 8. Find the area A of a triangle, correct to 1 decimal place, given $A = \frac{1}{2}$ bh, when the base length b is 23.42 m and the height h is 53.7 m
- 9. Resistance R₂ is given by R₂ = R₁(1 + α t). Find R₂, correct to 4 significant figures, when R₁ = 220, α = 0.00027 and t = 75.6
- 10. Density = $\frac{\text{mass}}{\text{volume}}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is 173 cm³. Give the answer in units of kg/m³. Note that $1 \text{ cm}^3 = 10^{-6} \text{m}^3$
- 11. Evaluate resistance R_T , correct to 4 significant figures, given $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ when $R_1 = 5.5\Omega$, $R_2 = 7.42\Omega$ and $R_3 = 12.6\Omega$
- 12. The potential difference, V volts, available at battery terminals is given by V = E -Ir. Evaluate V when E = 5.62, I = 0.70 and R = 4.30
- 13. The current I amperes flowing in a number of cells is given by $I = \frac{nE}{R+nr}$. Evaluate the current, correct to 3 significant figures, when n = 36. E = 2.20, R = 2.80 and r = 0.50
- 14. Energy, E joules, is given by the formula $E = \frac{1}{2}LI^2$. Evaluate the energy when L = 5.5 H and I = 1.2 A
- 15. The current I amperes in an a.c. circuit is given by $I = \frac{V}{\sqrt{(R^2 + X^2)}}$. Evaluate the

current, correct to 4 significant figures, when $V = 250 V, R = 11.0 \Omega$ and $X = 16.2 \Omega$

1.2 Fractions

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2, is referred to as the **numerator** and the bottom line, i.e. the 3, is referred to as the **denominator**.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}$, $\frac{1}{2}$, $\frac{3}{8}$, 5 n.

$$\overline{16}$$
, and so or

An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}$, $\frac{2}{1}$, $\frac{8}{3}$, $\frac{16}{5}$, and so on.

Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A, given
$$A = \frac{1}{2} + \frac{1}{3}$$

The lowest common denominator of the two denominators 2 and 3 is 6, i.e. 6 is the lowest number that both 2 and 3 will divide into.

Then $\frac{1}{2} = \frac{3}{6}$ and $\frac{1}{3} = \frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6.

The two fractions can therefore be added as:

$$\mathbf{A} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{3+2}{6} = \frac{5}{6}$$

Problem 9. Evaluate A, given
$$A = \frac{2}{3} + \frac{3}{4}$$

A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4 = 12$

The two fractions can now be made equivalent, 2 8 3 9

i.e.
$$\frac{2}{3} = \frac{3}{12}$$
 and $\frac{3}{4} = \frac{3}{12}$

so that they can be easily added together, as follows:

$$A = \frac{2}{3} + \frac{3}{4} = \frac{8}{12} + \frac{9}{12} = \frac{8+9}{12} = \frac{17}{12}$$
$$A = \frac{2}{3} + \frac{3}{4} = 1\frac{5}{12}$$

Problem 10. Evaluate A, given A =
$$\frac{1}{6} + \frac{2}{7} + \frac{3}{2}$$

A suitable common denominator can be obtained by multiplying $6 \times 7 = 42$, and all three denominators divide exactly into 42.

Thus,

ence,
$$A = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = \frac{7}{42} + \frac{12}{42} + \frac{63}{42}$$

 $= \frac{7 + 12 + 63}{42} = \frac{82}{42} = \frac{41}{21}$
i.e. $A = \frac{1}{6} + \frac{2}{7} + \frac{3}{2} = 1\frac{20}{21}$

 $\frac{1}{6} = \frac{7}{42}, \frac{2}{7} = \frac{12}{42} \text{ and } \frac{3}{2} = \frac{63}{42}$

Problem 11. Determine A as a single fraction, given A = $\frac{1}{x} + \frac{2}{y}$

A common denominator can be obtained by multiplying the two denominators together, i.e. xy

Thus,
$$\frac{1}{x} = \frac{y}{xy}$$
 and $\frac{2}{y} = \frac{2x}{xy}$
Hence, $A = \frac{1}{x} + \frac{2}{y} = \frac{y}{xy} + \frac{2x}{xy}$ i.e. $A = \frac{y + 2x}{xy}$

Note that addition, subtraction, multiplication and division of fractions may be determined using a calculator. Locate the \square and \square functions on your calculator (the latter function is a shift function found above the $\frac{\square}{\square}$ function) and then check the following worked problems.

Problem 12. Evaluate $\frac{1}{4} + \frac{2}{3}$ using a calculator

(i) Press
$$\frac{\Box}{\Box}$$
 function

(ii) Type in 1

- (iii) Press \downarrow on the cursor key and type in 4
- $\frac{1}{4}$ appears on the screen (iv)
- (v) Press \rightarrow on the cursor key and type in +

(vi) Press
$$\frac{\Box}{\Box}$$
 function

i.e.

1

- (vii) Type in 2
- (viii) Press \downarrow on the cursor key and type in 3
- (ix) Press \rightarrow on the cursor key
- (x) Press = and the answer $\frac{11}{12}$ appears
- (xi) Press $S \Leftrightarrow D$ function and the fraction changes to a decimal 0.9166666....

Thus, $\frac{1}{4} + \frac{2}{3} = \frac{11}{12} = 0.9167$ as a decimal, correct to 4 decimal places.

It is also possible to deal with **mixed numbers** on the calculator. \square

Press Shift then the
$$\square$$
 function and \square \square appears.

Problem 13. Evaluate
$$5\frac{1}{5} - 3\frac{3}{4}$$
 using a calculator

- Press Shift then the $\frac{\Box}{\Box}$ function and $\Box\frac{\Box}{\Box}$ appears (i) on the screen
- Type in 5 then \rightarrow on the cursor key (ii)
- (iii) Type in 1 and \downarrow on the cursor key
- Type in 5 and $5\frac{1}{5}$ appears on the screen (iv)
- (v) Press \rightarrow on the cursor key
- Type in and then press Shift then the $\frac{\Box}{\Box}$ function (vi) and $5\frac{1}{5} - \Box \frac{\Box}{\Box}$ appears on the screen
- (vii) Type in 3 then \rightarrow on the cursor key
- (viii) Type in 3 and \downarrow on the cursor key

(ix) Type in 4 and
$$5\frac{1}{5} - 3\frac{3}{4}$$
 appears on the screen

- (x) Press = and the answer $\frac{29}{20}$ appears
- Press shift and then $S \Leftrightarrow D$ function and $1\frac{9}{20}$ (xi) appears
- Press S \Leftrightarrow D function and the fraction changes to (xii) a decimal 1.45

Thus,
$$5\frac{1}{5} - 3\frac{3}{4} = \frac{29}{20} = 1\frac{9}{20} = 1.45$$
 as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 881)

In problems 1 to 3, evaluate the given fractions

1.
$$\frac{1}{3} + \frac{1}{4}$$

2. $\frac{1}{5} + \frac{1}{4}$
3. $\frac{1}{6} + \frac{1}{2} - \frac{1}{3}$

In problems 4 and 5, use a calculator to evaluate the given expressions

4.
$$\frac{1}{3} - \frac{3}{4} \times \frac{8}{21}$$

5. $\frac{3}{4} \times \frac{4}{5} - \frac{2}{3} \div$

- 6. Evaluate $\frac{3}{8} + \frac{5}{6} \frac{1}{2}$ as a decimal, correct to 4 decimal places.
- 7. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number.
- 8. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} 1\frac{7}{10}$ as a decimal, orrect to 3 decimal places.

9. Determine
$$\frac{2}{x} + \frac{3}{y}$$
 as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.

Percentages are fractions having 100 as their denominator.

For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.

The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

$$0.275 = 0.275 \times 100\% = 27.5\%$$

Problem 15. Express 17.5% as a decimal number

$$17.5\% = \frac{17.5}{100} = 0.175$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$\frac{5}{8} = \frac{5}{8} \times 100\% = \frac{500}{8}\% = 62.5\%$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$57/79 = \frac{57}{79} = \frac{57}{79} \times 100\% = \frac{5700}{79}\%$$

= **72.15**% correct to 2 decimal places.

$$49/67 = \frac{49}{67} = \frac{49}{67} \times 100\% = \frac{4900}{67}\%$$

= **73.13**% correct to 2 decimal places

Hence, the second test mark is marginally better than the first test.

This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

Problem 18. Express 75% as a fraction

$$75\% = \frac{75}{100} = \frac{3}{4}$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25.

Problem 19. Express 37.5% as a fraction

$$37.5\% = \frac{37.5}{100}$$
$$= \frac{375}{1000}$$
 by multiplying numerator
and denominator by 10

 $= \frac{15}{40}$ by dividing numerator and denominator by 25 $= \frac{3}{8}$ by dividing numerator

and denominator by 5

27% of £65 =
$$\frac{27}{100} \times 65 =$$
£17.55 by calculator

Problem 21. A 160 GB iPod is advertised as costing £190 excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

VAT = 20% of £190 =
$$\frac{20}{100} \times 190 =$$
 £38

Total cost of iPod = $\pounds 190 + \pounds 38 = \pounds 228$

A quicker method to determine the total cost is: $1.20 \times \pounds 190 = \pounds 228$

Problem 22. Express 23 cm as a percentage of 72 cm, correct to the nearest 1%

23 cm as a percentage of 72 cm

$$=\frac{23}{72}\times 100\% = 31.94444\ldots.\%$$

= 32% correct to the nearest 1%

Problem 23. A box of screws increases in price from £45 to £52. Calculate the percentage change in cost, correct to 3 significant figures.

$$\% \text{ change} = \frac{\text{new value} - \text{original value}}{\text{original value}} \times 100\%$$
$$= \frac{52 - 45}{45} \times 100\% = \frac{7}{45} \times 100 = 15.6\%$$

Problem 24. A drilling speed should be set to 400 rev/min. The nearest speed available on the machine is 412 rev/min. Calculate the percentage over-speed.