

SEVENTH EDITION

BIRD'S ELECTRICAL
 CIRCUIT THEORY AND TECHNOLOGY

Bird's Electrical Circuit Theory and Technology

What skills are needed for a career in electrical and electronic engineering?

When you decide to become an electrical or electronic engineer, you're committing yourself to a profession that involves developing, designing, testing and supervising the manufacturing of electrical devices and equipment, including navigation systems, electric motors and power generation equipment. Therefore, to be able to handle such complex concepts and theories, and understand how to apply them to real-life projects, you need to possess a unique and tailored skillset. Indeed, it's no secret that a high proportion of engineering students drop out or change course, with a lack of preparedness often cited as the biggest reason for this unusually high attrition rate.
So, to see if you have what it takes to stay the course and develop a promising career in the field, here are the top 10 electrical and electronic engineering skills that you will need.

1. Problem-Solving Skills

Regardless of their discipline, engineers are, at their core, problem-solvers. This is particularly true in electrical and electronic engineering, where you are often required to think logically and apply a particular rule or concept to a problem in order to solve it.

2. Basic Circuit Knowledge

Electrical design can become an extraordinarily complex topic, especially where large installations are concerned (such as energy grids), or even within highly advanced pieces of small hardware, such as those used in smartphones. Therefore, if you are to have any hopes of getting to grips with it all, you need to first have a solid understanding of basic circuit design.

Sunshine Seeds/Shutterstock.com

3. Enthusiasm for Learning

Although it is an essential and unavoidable step, having a degree or a high qualification is not the end of the educational road for an electrical/electronic engineer; in fact, it is just the beginning of your active learning journey. Much of this is borne out of necessity. Electrical and electronic engineering is one of the fastest evolving and fiercely competitive engineering fields, so you will need to be constantly up to date (for example, with IEE wiring regs, and particularly if you work in the product design and manufacturing sector).

4. Communication Skills

There is barely a profession in the world where the ability to communicate is not important, and electrical and electronic engineering is no different. Whether it's understanding the needs and requirements of a client, working within project teams to develop or improve a piece of hardware/software, or working with other departments and stakeholders, communication skills are an essential part of the role.

5. Organisational Skills

The ability to organise and manage your time is important for an electrical/electronic engineer, as much of your work will likely be time-sensitive or project-based, regardless of which area of engineering you specialise in.

6. Numerical Skills

A common issue for electrical and electronic engineering students is that their mathematical background is not strong enough. Therefore, it is important to focus on mathematics at college or university. Understanding engineering is extremely difficult without a good knowledge of mathematics.

7. Work Ethic

A strong work ethic is another hugely important part of a successful engineer's makeup. Therefore, you must be determined and willing to work until you find a solution to whatever technical problems you encounter in your role.

8. Critical Thinking Skills

Critical thinking is a broad skill that can be applied to a wide array of situations, but it is just as important in electrical and electronic engineering. Possessing the ability to approach things differently or take a different view to the norm can make a big difference when you are trying to achieve a certain goal with your project.

9. Creative Thinking Skills

Engineers are not just problem-solvers - they are pioneers. Whether it's on a grand scale or a simple one, the solutions they provide change the way we live; therefore, to be able to explore and implement such radical ideas, you need to be able to think 'outside the box'. This is especially true in the commercial sector, where electronics giants are constantly competing to develop new and exciting technologies. You can have all the knowledge in the world, but if you don't know how to be creative and explore new possibilities with it, then you're going to be left behind.

10. Programming Skills

Although the importance of programming is higher in some areas of electrical and electronic engineering than others, it is still a very useful skill to possess, particularly when working with low-level embedded systems or when analysing data.

Gorodenkoff/Shutterstock.com
As you can see, the career of an electrical/electronic engineer is demanding. Apart from possessing the requisite technical knowledge, it is also mandatory for you to incorporate other key soft skills into your employability repertoire, such as decision-making, leadership and attention to detail. The rewards are high though, with electrical and electronic engineering one of the highest-paying sectors in the industry.
Hopefully, Bird's Electrical Circuit Theory and Technology will help you on your first important steps in a long career in electrical and/or electronic engineering. There is a lot to learn; stay with it - it will be worth it.

Bird's Electrical Circuit Theory and Technology

Now in its seventh edition, Bird's Electrical Circuit Theory and Technology explains electrical circuit theory and associated technology topics in a straightforward manner, supported by practical engineering examples and applications to ensure that readers can relate theory to practice.
The extensive and thorough coverage, containing over 800 worked examples, makes this an excellent text for a range of courses, in particular for Degree and Foundation Degree in electrical principles, circuit theory, telecommunications, and electrical technology. The text includes some essential mathematics revision, together with all the essential electrical and electronic principles for BTEC National and Diploma syllabuses and City \& Guilds Technician Certificate and Diploma syllabuses in engineering. This material will be a great revision for those on higher courses.
This edition includes several new sections, including glass batteries, climate change, the future of electricity production and discussions concerning everyday aspects of electricity, such as watts and lumens, electrical safety, AC vs DC , and trending technologies.
Its companion website at www.routledge.com/cw/bird provides resources for both students and lecturers, including full solutions for all 1400 further questions, lists of essential formulae, and illustrations, as well as full solutions to revision tests for course instructors.

John Bird, BSc (Hons), CEng, CMath, CSci, FIMA, FIET, FCollT, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, UK. More recently, he has combined freelance lecturing at the University of Portsmouth with Examiner responsibilities for Advanced Mathematics with City \& Guilds and examining for the International Baccalaureate Organisation. He has over 45 years' experience of successfully teaching, lecturing, instructing, training, educating, and planning trainee engineers' study programmes. He is the author of 146 textbooks on engineering, science and mathematical subjects, with worldwide sales of over one million copies. He is a chartered engineer, a chartered mathematician, a chartered scientist and a Fellow of three professional institutions. He has recently retired from lecturing at the Royal Navy's Defence College of Marine Engineering in the Defence College of Technical Training at H.M.S. Sultan, Gosport, Hampshire, UK, one of the largest engineering training establishments in Europe.

Besides this text, Electrical Circuit Theory and Technology $7^{\text {th }}$ Edition, other books written by John Bird, and published by Routledge, include:

- Bird's Basic Engineering Mathematics $8^{\text {th }}$ Edition
- Bird's Engineering Mathematics $\boldsymbol{9}^{\text {th }}$ Edition
- Bird's Higher Engineering Mathematics $\boldsymbol{9}^{\text {th }}$ Edition
- Bird's Comprehensive Engineering Mathematics $2^{\text {nd }}$ Edition
- Mathematics Pocket Book for Engineers and Scientists $5^{\text {th }}$ Edition
- Bird's Electrical and Electronic Principles and Technology $7^{\text {th }}$ Edition
- Science and Mathematics for Engineering $\boldsymbol{6}^{\text {th }}$ Edition
- Mechanical Engineering Principles $4^{\text {th }}$ Edition
- Mechanics of Solids $3^{\text {rd }}$ Edition

Bird's Electrical Circuit Theory and Technology

Seventh Edition
John Bird

2 Routledge
Taylor \& Francis Group

Seventh edition published 2022
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
and by Routledge
605 Third Avenue, New York, NY 10158
Routledge is an imprint of the Taylor \& Francis Group, an informa business

© 2022 John Bird

The right of John Bird to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Newnes 1997
Sixth edition published by Routledge 2017
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Cataloging-in-Publication Data
Names: Bird, J. O., author
Title: Bird's electrical circuit theory and technology / John Bird.
Other titles: Electrical circuit theory and technology
Description: Seventh. I New York : Routledge, 2021. I Includes index.
Identifiers: LCCN 2021003948 (print) | LCCN 2021003949 (ebook) I ISBN
9780367672249 (hbk) | ISBN 9780367672225 (pbk) | ISBN 9781003130338
(ebk)
Subjects: LCSH: Electric circuits. I Electrical engineering.
Classification: LCC TK454 .B48 2021 (print) | LCC TK454 (ebook) I DDC

621.319/2-dc23

LC record available at https://lccn.loc.gov/2021003948
LC ebook record available at https://lcen.loc.gov/2021003949
ISBN: 978-0-367-67224-9 (hbk)
ISBN: 978-0-367-67222-5 (pbk)
ISBN: 978-1-003-13033-8 (ebk)
Typeset in Times
by KnowledgeWorks Global Ltd.
Access the companion website: www.routledge.com/cw/bird

In Memory of Elizabeth

Taylor \& Francis
Taylor \& Francis Group
http://taylorandfrancis.com

Contents

Preface

Section 1 Revision of some basic mathematics 1
1 Some mathematics revision 3
1.1 Use of calculator and evaluating formulae 4
1.2 Fractions 7
1.3 Percentages 8
1.4 Ratio and proportion 10
1.5 Laws of indices 13
1.6 Brackets 16
1.7 Solving simple equations 16
1.8 Transposing formulae 19
1.9 Solving simultaneous equations 21
2 Further mathematics revision 23
2.1 Radians and degrees 24
2.2 Measurement of angles 25
2.3 Trigonometry revision 26
2.4 Logarithms and exponentials 28
2.5 Straight line graphs 33
2.6 Gradients, intercepts and equation of a graph 35
2.7 Practical straight line graphs 37
2.8 Calculating areas of common shapes 38
Main formulae for Section 1 Revision of some basic mathematics 44
Section 2 Basic electrical engineering principles 47
3 Units associated with basic electrical quantities 49
3.1 SI units 49
3.2 Charge 50
3.3 Force 50
3.4 Work 51
3.5 Power 52
3.6 Electrical potential and e.m.f. 53
3.7 Resistance and conductance 53
3.8 Electrical power and energy 54
3.9 Summary of terms, units and their symbols 55
4 An introduction to electric circuits 56
4.1 Standard symbols for electrical components 57
4.2 Electric current and quantity of electricity 57
4.3 Potential difference and resistance 58
4.4 Basic electrical measuring instruments 58
4.5 Linear and non-linear devices 59
4.6 Ohm's law 59
4.7 Multiples and sub-multiples 59
4.8 Conductors and insulators 61
4.9 Electrical power and energy 61
4.10 Main effects of electric current 64
4.11 Fuses 64
4.12 Insulation and the dangers of constant high current flow 65
Practical laboratory experiment: Ohm's law 66
Which light bulb to choose? Watts or lumens! 68
5 Resistance variation 70
5.1 Resistor construction 71
5.2 Resistance and resistivity 71
5.3 Temperature coefficient of resistance 73
5.4 Resistor colour coding and ohmic values 75
6 Batteries and alternative sources of energy 78
6.1 Introduction to batteries 79
6.2 Some chemical effects of electricity 79
6.3 The simple cell 80
6.4 Corrosion 81
6.5 e.m.f. and internal resistance of a cell 81
6.6 Primary cells 83
6.7 Secondary cells 84
6.8 Lithium-ion batteries 86
6.9 Cell capacity 89
6.10 Safe disposal of batteries 89
6.11 Fuel cells 89
6.12 Alternative and renewable energy sources 90
6.13 Solar energy 91
6.14 Glass batteries 93
Revision Test 1 94
What uses the most energy in your home? 95
7 Series and parallel networks 96
7.1 Series circuits 97
7.2 Potential divider 98
7.3 Parallel networks 100
7.4 Current division 102
7.5 Loading effect 105
7.6 Potentiometers and rheostats 106
7.7 Relative and absolute voltages 109
7.8 Earth potential and short circuits 110
7.9 Wiring lamps in series and in parallel 110
Practical laboratory experiment:
Series-parallel d.c. circuit 112
8 Capacitors and capacitance 114
8.1 Introduction to capacitors 115
8.2 Electrostatic field 115
8.3 Electric field strength 116
8.4 Capacitance 116
8.5 Capacitors 117
8.6 Electric flux density 117
8.7 Permittivity 118
8.8 The parallel plate capacitor 119
8.9 Capacitors connected in parallel and series 120
8.10 Dielectric strength 124
8.11 Energy stored 124
8.12 Practical types of capacitor 125
8.13 Supercapacitors 127
8.14 Discharging capacitors 128
9 Magnetic circuits 129
9.1 Introduction to magnetism and magnetic circuits 130
9.2 Magnetic fields 131
9.3 Magnetic flux and flux density 132
9.4 Magnetomotive force and magnetic field strength 132
9.5 Permeability and $B-H$ curves 133
9.6 Reluctance 134
9.7 Composite series magnetic circuits 136
9.8 Comparison between electrical and magnetic quantities 139
9.9 Hysteresis and hysteresis loss 139
Revision Test 2 141
Some interesting facts about electricity 142
10 Electromagnetism 144
10.1 Magnetic field due to an electric current 145
10.2 Electromagnets 146
10.3 Force on a current-carrying conductor 148
10.4 Principle of operation of a simple d.c. motor 151
10.5 Principle of operation of a moving-coil instrument 152
10.6 Force on a charge 152
11 Electromagnetic induction 154
11.1 Introduction to electromagnetic induction 155
11.2 Laws of electromagnetic induction 156
11.3 Rotation of a loop in a magnetic field 159
11.4 Inductance 160
11.5 Inductors 16
11.6 Energy stored 162
11.7 Inductance of a coil 162
11.8 Mutual inductance 164
12 Electrical measuring instruments and measurements 167
12.1 Introduction 168
12.2 Analogue instruments 168
12.3 Shunts and multipliers 168
12.4 Electronic instruments 170
12.5 The ohmmeter 170
12.6 Multimeters 171
12.7 Wattmeters 171
12.8 Instrument 'loading' effect 171
12.9 The oscilloscope 173
12.10 Virtual test and measuring instruments 178
12.11 Virtual digital storage oscilloscopes 179
12.12 Waveform harmonics 182
12.13 Logarithmic ratios 183
12.14 Null method of measurement 185
12.15 Wheatstone bridge 186
12.16 d.c. potentiometer 186
12.17 a.c. bridges 187
12.18 Measurement errors 188
Where is energy wasted in the home? 191
13 Semiconductor diodes 193
13.1 Types of material 194
13.2 Semiconductor materials 194
13.3 Conduction in semiconductor materials 196
13.4 The p-n junction 196
13.5 Forward and reverse bias 197
13.6 Semiconductor diodes 200
13.7 Characteristics and maximum ratings 201
13.8 Rectification 201
13.9 Zener diodes 201
13.10 Silicon controlled rectifiers 203
13.11 Light emitting diodes 204
13.12 Varactor diodes 204
13.13 Schottky diodes 204
14 Transistors 206
14.1 Transistor classification 207
14.2 Bipolar junction transistors (BJTs) 207
14.3 Transistor action 208
14.4 Leakage current 209
14.5 Bias and current flow 210
14.6 Transistor operating configurations 210
14.7 Bipolar transistor characteristics 211
14.8 Transistor parameters 212
14.9 Current gain 213
14.10 Typical BJT characteristics and maximum ratings 214
14.11 Field effect transistors 215
14.12 Field effect transistor characteristics 216
14.13 Typical FET characteristics and maximum ratings 217
14.14 Transistor amplifiers 217
14.15 Load lines 219
Revision Test 3 224
Main formulae for Section 2 Basic electrical and electronic principles 226
Electrical safety is essential - electricity
KILLS ...! 227
Section 3 Electrical principles and technology 229
15 d.c. circuit theory 231
15.1 Introduction 231
15.2 Kirchhoff's laws 232
15.3 The superposition theorem 236
15.4 General d.c. circuit theory 238
15.5 Thévenin's theorem 240
15.6 Constant-current source 245
15.7 Norton's theorem 245
15.8 Thévenin and Norton equivalent networks 248
15.9 Maximum power transfer theorem 251
Practical laboratory experiment:
Superposition theorem 254
Practical laboratory experiment: Thévenin's
theorem 257
16 Alternating voltages and currents 260
16.1 Introduction 261
16.2 The a.c. generator 261
16.3 Waveforms 262
16.4 a.c. values 263
16.5 Electrical safety - insulation and fuses 266
16.6 The equation of a sinusoidal waveform 266
16.7 Combination of waveforms 269
16.8 Rectification 272
16.9 Smoothing of the rectified output waveform 273
Practical laboratory experiment: Use of an oscilloscope to measure voltage, frequency and phase 275
Practical laboratory experiment: Use of an oscilloscope with a bridge rectifier circuit 277
Revision Test 4 278
Electric shock! 279
17 Single-phase series a.c. circuits 281
17.1 Purely resistive a.c. circuit 282
17.2 Purely inductive a.c. circuit 282
17.3 Purely capacitive a.c. circuit 283
17.4 $R-L$ series a.c. circuit 284
17.5 $R-C$ series a.c. circuit 287
17.6 $R-L-C$ series a.c. circuit 289
17.7 Series resonance 292
17.8 Q-factor 293
17.9 Bandwidth and selectivity 295
17.10 Power in a.c. circuits 295
17.11 Power triangle and power factor 296
Practical laboratory experiment:
Measurement of the inductance of a coil 299
Practical laboratory experiment: Series a.c. circuit and resonance 301
18 Single-phase parallel a.c. circuits 303
18.1 Introduction 304
18.2 $R-L$ parallel a.c. circuit 304
$18.3 R-C$ parallel a.c. circuit 305
18.4 $L-C$ parallel a.c. circuit 306
18.5 $L R-C$ parallel a.c. circuit 308
18.6 Parallel resonance and Q-factor 311
18.7 Power factor improvement 315

	Practical laboratory experiment: Parallel a.c. circuit and resonance	320
	Why are relays so important in electrical circuits?	322
19	d.c. transients	324
	19.1 Introduction	325
	19.2 Charging a capacitor	325
	19.3 Time constant for a $C-R$ circuit	326
	19.4 Transient curves for a $C-R$ circuit	326
	19.5 Discharging a capacitor	330
	19.6 Camera flash	332
	19.7 Current growth in an $L-R$ circuit	332
	19.8 Time constant for an $L-R$ circuit	333
	19.9 Transient curves for an $L-R$ circuit	333
	19.10 Current decay in an $L-R$ circuit	335
	19.11 Switching inductive circuits	337
	19.12 The effect of time constant on a rectangular waveform	337
	Practical laboratory experiment: Charging and discharging a capacitor	339
20	Operational amplifiers	341
	20.1 Introduction to operational amplifiers	342
	20.2 Some op amp parameters	343
	20.3 Op amp inverting amplifier	344
	20.4 Op amp non-inverting amplifier	346
	20.5 Op amp voltage-follower	347
	20.6 Op amp summing amplifier	347
	20.7 Op amp voltage comparator	348
	20.8 Op amp integrator	349
	20.9 Op amp differential amplifier	350
	20.10 Digital to analogue (D/A) conversion	352
	20.11 Analogue to digital (A/D) conversion	352
	Revision Test 5	354
	Are you competent to do electrical work?	355
21	Global climate change and the future of electricity production	357
	21.1 Introduction	358
	21.2 Global climate change	358
	21.3 Evidence of rapid climate change	359
	21.4 Consequences of global climate change	359
	21.5 How does electric power production affect the global climate?	360
	21.6 Generating electrical power using coal	361

24 d.c. machines412
24.1 Introduction
24.2 The action of a commutator24.3 d.c. machine construction
41424.4 Shunt, series and compound windings24.5 e.m.f. generated in an armature winding414
24.6 d.c. generators415
24.7 Types of d.c. generator and their characteristics 417
24.8 d.c. machine losses 421
24.9 Efficiency of a d.c. generator 421
24.10 d.c. motors 422
24.11 Torque of a d.c. machine 423
24.12 Types of d.c. motor and their characteristics 424
24.13 The efficiency of a d.c. motor 428
24.14 d.c. motor starter 430
24.15 Speed control of d.c. motors 431
24.16 Motor cooling 433
25 Three-phase induction motors 434
25.1 Introduction 435
25.2 Production of a rotating magnetic field 435
25.3 Synchronous speed 437
25.4 Construction of a three-phase induction motor 438
25.5 Principle of operation of a three-phase induction motor 438
25.6 Slip 439
25.7 Rotor e.m.f. and frequency 440
25.8 Rotor impedance and current 441
25.9 Rotor copper loss 441
25.10 Induction motor losses and efficiency 442
25.11 Torque equation for an induction motor 443
25.12 Induction motor torque-speed characteristics 445
25.13 Starting methods for induction motors 446
25.14 Advantages of squirrel-cage induction motors 447
25.15 Advantages of wound rotor induction motor 448
25.16 Double cage induction motor 448
25.17 Uses of three-phase induction motors 448
Revision Test 7 449
Main formulae for Section 3 Electrical principles and technology 450
What does an engineer do?452
Section 4 Advanced circuit theoryand technology457
26 Revision of complex numbers 459
26.1 Introduction 459
26.2 Operations involving Cartesian complex numbers 461
26.3 Complex equations 463
26.4 The polar form of a complex number 464
26.5 Multiplication and division using complex numbers in polar form 465
26.6 De Moivre's theorem - powers and roots of complex numbers 467
27 Application of complex numbers to seriesa.c. circuits470
27.1 Introduction 470
27.2 Series a.c. circuits 471
27.3 Further worked problems on series a.c. circuits 477
28 Application of complex numbers to parallel a.c. networks 482
28.1 Introduction 482
28.2 Admittance, conductance and susceptance 483
28.3 Parallel a.c. networks 484
28.4 Further worked problems on parallel a.c. networks 488
29 Power in a.c. circuits 491
29.1 Introduction 491
29.2 Determination of power in a.c. circuits 492
29.3 Power triangle and power factor 494
29.4 Use of complex numbers for determination of power 495
29.5 Power factor improvement 499
Revision Test 8 504
The war of the currents: AC v DC 505
30 a.c. bridges 507
30.1 Introduction 507
30.2 Balance conditions for an a.c. bridge 507
30.3 Types of a.c. bridge circuit 509
30.4 Worked problems on a.c. bridges 513
31 Series resonance and Q-factor 517
31.1 Introduction 518
31.2 Series resonance 518
31.3 Q-factor 520
31.4 Voltage magnification 522
31.5 Q-factors in series 524

		Bandwidth	525
	31.7	Small deviations from the resonant frequency	529
32	Parallel	resonance and Q-factor	532
	32.1	Introduction	532
	32.2	The $L R-C$ parallel network	533
	32.3	Dynamic resistance	534
	32.4	The $L R-Q R$ parallel network	534
	32.5	Q-factor in a parallel network	535
		Further worked problems on parallel resonance and Q-factor	539
	Revision	Test 9	542
	What ev	veryday items in the home use motors?	543
33	Introdu	ction to network analysis	544
	33.1	Introduction	544
		Solution of simultaneous equations using determinants	545
	33.3	Network analysis using Kirchhoff's laws	547
34	Mesh-c	urrent and nodal analysis	554
		Mesh-current analysis	554
	34.2	Nodal analysis	558
35	The sup	erposition theorem	565
	35.1	Introduction	565
		Using the superposition theorem	565
		Further worked problems on the superposition theorem	570
36	Théven	in's and Norton's theorems	575
	36.1	Introduction	575
	36.2	Thévenin's theorem	576
		Further worked problems on Thévenin's theorem	582
	36.4	Norton's theorem	586
	36.5	Thévenin and Norton equivalent networks	593
	Revision	Test 10	598
	How do	es a car electrical system work?	599
37	Delta-s	tar and star-delta transformations	601
	37.1	Introduction	601
	37.2	Delta and star connections	601
	37.3	Delta-star transformation	602
	37.4	Star-delta transformation	610
38	Maximum power transfer theorems and		
	38.1	Maximum power transfer theorems	615
	38.2	Impedance matching	620

31.6 Bandwidth 525
frequency 529
32 Parallel resonance and Q-factor 53232.2 The $L R-C$ parallel network53332.4 Th $L R-R$ pallel534
32.5 Q -factor in a parallel network 535
resonance and Q -factor 539
Revision Test 9 542
What everyday items in the home use motors? 54333.1 Introduction544
33.2 Solution of simultaneous equations using determinants 545
33.3 Network analysis using Kirchhoff's laws 547
34.1 Mesh-current analysis 554
34.2 Nodal analysis 558
35.1 Introduction 565
35.2 Using the superposition theorem570
36.1 Introduction575
36.2 Thévenin's theorem582
Norton's theorem593
Revision Test 10 598
37.1 Introduction 60137.3 Delta-star602
37.4 Star-delta transformation 610
impedance matching 614
38.2 Impedance matching 620
Revision Test 11 623
HSE and electrical safety 624
39 Complex waveforms 626
39.1 Introduction 627
39.2 The general equation for a complex waveform 627
39.3 Harmonic synthesis 628
39.4 Fourier series of periodic and non-periodic functions 636
39.5 Even and odd functions and Fourier series over any range 641
39.6 r.m.s. value, mean value and the form factor of a complex wave 645
39.7 Power associated with complex waves 648
39.8 Harmonics in single-phase circuits 650
39.9 Further worked problems on harmonics in single-phase circuits 653
39.10 Resonance due to harmonics 657
39.11 Sources of harmonics 659
40 A numerical method of harmonic analysis 663
40.1 Introduction 663
40.2 Harmonic analysis on data given in tabular or graphical form 663
40.3 Complex waveform considerations 667
41 Magnetic materials 670
41.1 Revision of terms and units used with magnetic circuits 671
41.2 Magnetic properties of materials 672
41.3 Hysteresis and hysteresis loss 673
41.4 Eddy current loss 677
41.5 Separation of hysteresis and eddy current losses 680
41.6 Non-permanent magnetic materials 682
41.7 Permanent magnetic materials 684
Revision Test 12 685
What is electroplating? 686
42 Dielectrics and dielectric loss 688
42.1 Electric fields, capacitance and permittivity 688
42.2 Polarisation 689
42.3 Dielectric strength 689
42.4 Thermal effects 690
42.5 Mechanical properties 691
42.6 Types of practical capacitor 691
42.7 Liquid dielectrics and gas insulation 691
42.8 Dielectric loss and loss angle 691
43 Field theory 695
43.1 Field plotting by curvilinear squares 696
43.2 Capacitance between concentric cylinders 699
43.3 Capacitance of an isolated twin line 704
43.4 Energy stored in an electric field 707
43.5 Induced e.m.f. and inductance 709
43.6 Inductance of a concentric cylinder (or coaxial cable) 709
43.7 Inductance of an isolated twin line 712
43.8 Energy stored in an electromagnetic field 715
44 Attenuators 718
44.1 Introduction 719
44.2 Characteristic impedance 719
44.3 Logarithmic ratios 721
44.4 Symmetrical T- and π-attenuators 723
44.5 Insertion loss 728
44.6 Asymmetrical T- and π-sections 731
44.7 The L-section attenuator 734
44.8 Two-port networks in cascade 736
44.9 $A B C D$ parameters 739
44.10 $A B C D$ parameters for networks 742
44.11 Characteristic impedance in terms of $A B C D$ parameters 748
Revision Test 13 750
Could we live without electricity? 751
45 Filter networks 753
45.1 Introduction 753
45.2 Basic types of filter sections 754
45.3 The characteristic impedance and the attenuation of filter sections 756
45.4 Ladder networks 757
45.5 Low-pass filter sections 758
45.6 High-pass filter sections 764
45.7 Propagation coefficient and time delay in filter sections 769
45.8 ' m-derived' filter sections 775
45.9 Practical composite filters 780
46 Magnetically coupled circuits 783
46.1 Introduction 783
46.2 Self-inductance 783
46.3 Mutual inductance 784
46.4 Coupling coefficient 785
46.5 Coils connected in series 786
46.6 Coupled circuits 789
46.7 Dot rule for coupled circuits 794
47 Transmission lines 801
47.1 Introduction 801
47.2 Transmission line primary constants 802
47.3 Phase delay, wavelength and velocity of propagation 803
47.4 Current and voltage relationships 804
47.5 Characteristic impedance and propagation coefficient in terms of the primary constants 806
47.6 Distortion on transmission lines 810
47.7 Wave reflection and the reflection coefficient 812
47.8 Standing-waves and the standing-wave ratio 815
48 Transients and Laplace transforms 820
48.1 Introduction 821
48.2 Response of $R-C$ series circuit to a step input 821
48.3 Response of $R-L$ series circuit to a step input 823
48.4 $L-R-C$ series circuit response 826
48.5 Introduction to Laplace transforms 829
48.6 Inverse Laplace transforms and the solution of differential equations 834
48.7 Laplace transform analysis directly from the circuit diagram 839
48.8 $L-R-C$ series circuit using Laplace transforms 849
48.9 Initial conditions 852
Revision Test 14 856
Main formulae for Section 4 Advanced circuit theory and technology 857
Ten trending technologies 862
Section 5 General reference 871
Standard electrical quantities - their symbols and units 873
Greek alphabet 876
Common prefixes 877
Resistor colour coding and ohmic values 878
Future technology snippets 879
Answers to Practice Exercises 881
Index 903

Preface

Bird's Electrical Circuit Theory and Technology

 $7^{\text {th }}$ Edition provides coverage for a wide range of courses that contain electrical principles, circuit theory and technology in their syllabuses, from Introductory to Degree level - and including Edexcel BTEC Levels 2 to 5 National Certificate/Diploma, Higher National Certificate/Diploma and Foundation Degrees in EngineeringIn this new seventh edition, new material added includes mention of the vast topic of global climate change and the future of electricity production, the development of glass batteries, and some practical laboratory experiments have been added at appropriate places in the text, along with other minor additions and modifications. The text is essentially, as the title suggests, all about electrical circuit theory, and to add too many practical descriptions would have unduly increased its extent. However, a number of associated electrical topics, hopefully of interest and help to readers, have been added, each on one or two pages, some with photographs, adding practical, everyday aspects of electricity, showing how the principles and theory explained in the text are commonly used.
The text is set out in five sections as follows:
SECTION 1, comprising chapters 1 and 2 , involves Revision of some basic mathematics needed for electrical and electronic principles and in general enginerring.

SECTION 2, involving chapters 3 to 14 , contains 'Basic electrical engineering principles' which any student wishing to progress in electrical engineering would need to know. An introduction to units, electrical circuits, resistance variation, batteries and alternative sources of energy, series and parallel circuits, capacitors and capacitance, magnetic circuits, electromagnetism, electromagnetic induction, electrical measuring instruments and measurements, semiconductor diodes and transistors are all included in this section.
SECTION 3, involving chapters 15 to 25 , contains 'Electrical principles and technology' suitable as a
lead-in to Degree studies, and suitable for National Certificate, National Diploma and City \& Guilds courses in electrical and electronic engineering. Direct current circuit theory, alternating voltages and currents, single-phase series and parallel circuits, d.c. transients, operational amplifiers, global climate change and the future of electricity production, three-phase systems, transformers, d.c. machines and three-phase induction motors are all included in this section.
SECTION 4, involving chapters 26 to 48 , contains 'Advanced circuit theory and technology' suitable for Degree, Foundation degree, Higher National Certificate/Diploma and City \& Guilds courses in electrical and electronic/telecommunications engineering. The three earlier sections of the book will provide a valuable reference/revision for students at this level.

Complex numbers and their application to series and parallel networks, power in a.c. circuits, a.c. bridges, series and parallel resonance and Q -factor, network analysis involving Kirchhoff's laws, mesh and nodal analysis, the superposition theorem, Thévenin's and Norton's theorems, delta-star and star-delta transforms, maximum power transfer theorems and impedance matching, complex waveforms, Fourier series, harmonic analysis, magnetic materials, dielectrics and dielectric loss, field theory, attenuators, filter networks, magnetically coupled circuits, transmission line theory and transients and Laplace transforms are all included in this section.

SECTION 5 provides a short, 'General reference' for standard electrical quantities - their symbols and units, the Greek alphabet, common prefixes and resistor colour coding and ohmic values.

At the beginning of each of the 48 chapters a brief explanation as to why it is important to understand the material contained within that chapter is included, together with a list of learning objectives.
At the end of each of the first four sections of the text is a handy reference of the main formulae used.

There are a number of internet downloads freely available to both students and lecturers/instructors at www.routledge.com/cw/bird; these are listed in the right-hand column on this page.

It is not possible to acquire a thorough understanding of electrical principles, circuit theory and technology without working through a large number of numerical problems. It is for this reason that Bird's Electrical Circuit Theory and Technology $7^{\text {th }}$ Edition contains nearly 800 detailed worked problems, together with some 1350 further problems (with answers at the back of the book), arranged within 205 Practice Exercises that appear every few pages throughout the text. Some 1150 line diagrams further enhance the understanding of the theory.
Fourteen Revision Tests have been included, interspersed within the text every few chapters. For example, Revision Test 1 tests understanding of chapters 3 to 6 , Revision Test 2 tests understanding of chapters 7 to 9 , Revision Test 3 tests understanding of chapters 10 to 14 and so on. These Revision Tests do not have answers given since it is envisaged that lecturers/instructors could set the Revision Tests for students to attempt as part of their course structure. Lecturers/ instructors may obtain a complimentary set of solutions of the Revision Tests in the Instructor's Section at www.routledge.com/cw/bird
'Learning by Example' is at the heart of Bird's Electrical Circuit Theory and Technology $7^{\text {th }}$ Edition.

JOHN BIRD
Formerly Royal Naval Defence College of Marine Engineering, HMS Sultan, University of Portsmouth and Highbury College, Portsmouth

Free Web downloads

The following support material is available from http://www.routledge.com/cw/bird

For Students:

1. Full solutions to all $\mathbf{1 3 5 0}$ further questions in the Practice Exercises
2. A set of formulae for each of the four sections of the text
3. 68 multiple choice questions for the mathematics revision of chapters 1 and 2
4. Information on 38 Engineers/Scientists mentioned in the text

For Lecturers/Instructors:
1-4. As per students $\mathbf{1 - 4}$ above
5. Full solutions and marking scheme for each of the 14 Revision Tests; also, each test may be downloaded.
6. All 1150 illustrations used in the text may be downloaded for use in PowerPoint presentations

Taylor \& Francis
Taylor \& Francis Group
http://taylorandfrancis.com

Section 1

Revision of some basic mathematics

Taylor \& Francis
Taylor \& Francis Group
http://taylorandfrancis.com

Chapter 1

Some mathematics revision

Why it is important to understand: Some mathematics revision
Mathematics is a vital tool for professional and chartered engineers. It is used in electrical and electronic engineering, in mechanical and manufacturing engineering, in civil and structural engineering, in naval architecture and marine engineering and in aeronautical and rocket engineering. In these various branches of engineering, it is very often much cheaper and safer to design your artefact with the aid of mathematics - rather than through guesswork. 'Guesswork' may be reasonably satisfactory if you are designing an exactly similar artefact as one that has already proven satisfactory; however, the classification societies will usually require you to provide the calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily available to you and you may have to provide fresh calculations, to prove that your artefact is 'roadworthy'. For example, if you design a tall building or a long bridge by 'guesswork', and the building or bridge do not prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf the initial estimate you made to construct these structures, and cause you to go bankrupt. Thus, without mathematics, the prospective professional or chartered engineer is very severely disadvantaged. Using a calculator, evaluating formulae, manipulating fractions, understanding and performing calculations with percentages, appreciating ratios and direct and inverse proportion, understanding and using the laws of indices, expanding equations containing brackets, solving simple equations, transposing formulae and solving simultaneous equations are all important aspects of early mathematics that need to be revised.
Knowledge of mathematics provides the basis for all engineering.

At the end of this chapter you should be able to:

- use a calculator and evaluate formulae
- manipulate fractions
- understand and perform calculations with percentages
- appreciate ratios and direct and inverse proportion
- understand and use the laws of indices
- expand equations containing brackets
- solve simple equations
- transpose formulae
- solve simultaneous equations in two unknowns

1.1 Use of calculator and evaluating formulae

In engineering, calculations often need to be performed. For simple numbers it is useful to be able to use mental arithmetic. However, when numbers are larger an electronic calculator needs to be used.

In engineering calculations it is essential to have a scientific notation calculator which will have all the necessary functions needed, and more. This chapter assumes you have a CASIO fx-991ES PLUS calculator, or similar. If you can accurately use a calculator, your confidence with engineering calculations will improve.
Check that you can use a calculator in the following Practice Exercise.

Practice Exercise 1 Use of calculator

(Answers on page 881)

1. Evaluate
$378.37-298.651+45.64-94.562$
2. Evaluate $\frac{17.35 \times 34.27}{41.53 \div 3.76}$ correct to 3 decimal places
3. Evaluate $\frac{(4.527+3.63)}{(452.51 \div 34.75)}+0.468$ correct to 5 significant figures
4. Evaluate $52.34-\frac{(912.5 \div 41.46)}{(24.6-13.652)}$ correct to 3 decimal places
5. Evaluate $\frac{52.14 \times 0.347 \times 11.23}{19.73 \div 3.54}$ correct to 4 significant figures
6. Evaluate 6.85^{2} correct to 3 decimal places
7. Evaluate $(0.036)^{2}$ in engineering form
8. Evaluate 1.3^{3}
9. Evaluate $(0.38)^{3}$ correct to 4 decimal places
10. Evaluate $(0.018)^{3}$ in engineering form
11. Evaluate $\frac{1}{0.00725}$ correct to 1 decimal place
12. Evaluate $\frac{1}{0.065}-\frac{1}{2.341}$ correct to 4 significant figures
13. Evaluate 2.1^{4}
14. Evaluate $(0.22)^{5}$ correct to 5 significant figures in engineering form
15. Evaluate $(1.012)^{7}$ correct to 4 decimal places
16. Evaluate $1.1^{3}+2.9^{4}-4.4^{2}$ correct to 4 significant figures
17. Evaluate $\sqrt{34528}$ correct to 2 decimal places
18. Evaluate $\sqrt[3]{17}$ correct to 3 decimal places
19. Evaluate $\sqrt[6]{2451}-\sqrt[4]{46}$ correct to 3 decimal places

Express the answers to questions 20 to 23 in engineering form.
20. Evaluate $5 \times 10^{-3} \times 7 \times 10^{8}$
21. Evaluate $\frac{6 \times 10^{3} \times 14 \times 10^{-4}}{2 \times 10^{6}}$
22. Evaluate $\frac{56.43 \times 10^{-3} \times 3 \times 10^{4}}{8.349 \times 10^{3}}$ correct to 3 decimal places
23. Evaluate $\frac{99 \times 10^{5} \times 6.7 \times 10^{-3}}{36.2 \times 10^{-4}}$ correct to 4 significant figures
24. Evaluate $\frac{4}{5}-\frac{1}{3}$ as a decimal, correct to 4 decimal places
25. Evaluate $\frac{2}{3}-\frac{1}{6}+\frac{3}{7}$ as a fraction
26. Evaluate $2 \frac{5}{6}+1 \frac{5}{8}$ as a decimal, correct to 4 significant figures
27. Evaluate $5 \frac{6}{7}-3 \frac{1}{8}$ as a decimal, correct to 4 significant figures
28. Evaluate $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$ as a fraction
29. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number
30. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal, correct to 3 decimal places
31. Evaluate $\frac{\left(4 \frac{1}{5}-1 \frac{2}{3}\right)}{\left(3 \frac{1}{4} \times 2 \frac{3}{5}\right)}-\frac{2}{9}$ as a decimal, correct to 3 significant figures

In questions 32 to 38 , evaluate correct to 4 decimal places.
32. Evaluate $\sin 67^{\circ}$
33. Evaluate $\tan 71^{\circ}$
34. Evaluate $\cos 63.74^{\circ}$
35. Evaluate $\tan 39.55^{\circ}-\sin 52.53^{\circ}$
36. Evaluate $\sin (0.437 \mathrm{rad})$
37. Evaluate $\tan (5.673 \mathrm{rad})$
38. Evaluate $\frac{\left(\sin 42.6^{\circ}\right)\left(\tan 83.2^{\circ}\right)}{\cos 13.8^{\circ}}$

In questions 39 to 45 , evaluate correct to 4 significant figures.
39. 1.59π
40. $2.7(\pi-1)$
41. $\pi^{2}(\sqrt{13}-1)$
42. $8.5 e^{-2.5}$
43. $3 e^{(2 \pi-1)}$
44. $\sqrt{\left[\frac{5.52 \pi}{2 e^{-2} \times \sqrt{26.73}}\right]}$
45. $\sqrt{\left[\frac{e^{(2-\sqrt{3})}}{\pi \times \sqrt{8.57}}\right]}$

Evaluation of formulae

The statement $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ is called a formula for y in terms of m, x and c.
$\mathrm{y}, \mathrm{m}, \mathrm{x}$ and c are called symbols.
When given values of m, x and c we can evaluate y.
There are a large number of formulae used in engineering and in this section we will insert numbers in place of symbols to evaluate engineering quantities.
Here are some practical examples. Check with your calculator that you agree with the working and answers.

Problem 1. In an electrical circuit the voltage V is given by Ohm's law, i.e. $V=I R$. Find, correct to 4 significant figures, the voltage when $\mathrm{I}=5.36 \mathrm{~A}$ and $\mathrm{R}=14.76 \Omega$

$$
\mathrm{V}=\mathrm{IR}=\mathrm{I} \times \mathrm{R}=5.36 \times 14.76
$$

Hence, voltage $\mathbf{V}=\mathbf{7 9 . 1 1} \mathbf{V}$, correct to $\mathbf{4}$ significant figures

Problem 2. Velocity v is given by $\mathrm{v}=\mathrm{u}+\mathrm{at}$. If $u=9.54 \mathrm{~m} / \mathrm{s}, \mathrm{a}=3.67 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{t}=7.82 \mathrm{~s}$, find v , correct to 3 significant figures.

$$
\begin{aligned}
\mathrm{v}=\mathrm{u}+\mathrm{at} & =9.54+3.67 \times 7.82 \\
& =9.54+28.6994=38.2394
\end{aligned}
$$

Hence, velocity $\mathrm{v}=\mathbf{3 8 . 2} \mathbf{~ m} / \mathrm{s}$, correct to $\mathbf{3}$ significant
figures figures

Problem 3. The area, A , of a circle is given by $\mathrm{A}=\pi \mathrm{r}^{2}$. Determine the area correct to 2 decimal places, given radius $r=5.23 \mathrm{~m}$.

$$
\mathrm{A}=\pi \mathrm{r}^{2}=\pi(5.23)^{2}=\pi(27.3529)
$$

Hence, area, $A=85.93 \mathrm{~m}^{2}$, correct to 2 decimal places

Problem 4. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density when the mass is 6.45 kg and the volume is $300 \times 10^{-6} \mathrm{~m}^{3}$.

Density $=\frac{\text { mass }}{\text { volume }}=\frac{6.45 \mathrm{~kg}}{300 \times 10^{-6} \mathrm{~m}^{3}}=\mathbf{2 1 5 0 0} \mathbf{~ k g} / \mathbf{m}^{3}$
Problem 5. The power, P watts, dissipated in an electrical circuit is given by the formula $P=\frac{V^{2}}{R}$. Evaluate the power, correct to 4 significant figures, given that $\mathrm{V}=230 \mathrm{~V}$ and $\mathrm{R}=35.63 \Omega$

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{(230)^{2}}{35.63}=\frac{52900}{35.63}=1484.70390 \ldots
$$

Press ENG and $1.48470390 . . \times 10^{3}$ appears on the screen
Hence, power, $P=1485 \mathrm{~W}$ or 1.485 kW correct to 4 significant figures.

Problem 6. Resistance, $\mathrm{R} \Omega$, varies with temperature according to the formula $\mathrm{R}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$. Evaluate R , correct to 3 significant figures, given $\mathrm{R}_{0}=14.59, \alpha=0.0043$ and $\mathrm{t}=80$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{R}_{0}(1+\alpha \mathrm{t})=14.59[1+(0.0043)(80)] \\
& =14.59(1+0.344)=14.59(1.344)
\end{aligned}
$$

Hence, resistance, $R=19.6 \Omega$, correct to 3 significant figures

Problem 7. The current, I amperes, in an a.c. circuit is given by: $\mathrm{I}=\frac{V}{\sqrt{\left(R^{2}+X^{2}\right)}}$ Evaluate the current, correct to 2 decimal places, when
$\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=25.0 \Omega$ and $\mathrm{X}=18.0 \Omega$
$\mathrm{I}=\frac{\mathrm{V}}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}=\frac{250}{\sqrt{\left(25.0^{2}+18.0^{2}\right)}}=8.11534341 \ldots$
Hence, current, $I=\mathbf{8 . 1 2} \mathrm{A}$, correct to 2 decimal places

Now try the following Practice Exercise

Practice Exercise 2 Evaluation of formulae

(Answers on page 881)

1. The area A of a rectangle is given by the formula $\mathrm{A}=1 \times \mathrm{b}$. Evaluate the area, correct to 2 decimal places, when $1=12.4 \mathrm{~cm}$ and $\mathrm{b}=5.37 \mathrm{~cm}$
2. The circumference C of a circle is given by the formula $\mathrm{C}=2 \pi \mathrm{r}$. Determine the circumference, correct to 2 decimal places, given $\mathrm{r}=8.40 \mathrm{~mm}$
3. A formula used in connection with gases is $\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{T}}$. Evaluate R when $\mathrm{P}=1500, \mathrm{~V}=5$ and $\mathrm{T}=200$
4. The velocity of a body is given by $v=u+a t$. The initial velocity u is measured when time t is 15 seconds and found to be $12 \mathrm{~m} / \mathrm{s}$. If the acceleration a is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ calculate the final velocity v
5. Calculate the current I in an electrical circuit, correct to 3 significant figures, when
$\mathrm{I}=\mathrm{V} / \mathrm{R}$ amperes when the voltage V is measured and found to be 7.2 V and the resistance R is 17.7Ω
6. Find the distance s , given that $\mathrm{s}=\frac{1}{2} \mathrm{gt}^{2}$. Time $\mathrm{t}=0.032$ seconds and acceleration due to gravity $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Give the answer in millimetres correct to 3 significant figures.
7. The energy stored in a capacitor is given by $\mathrm{E}=\frac{1}{2} \mathrm{CV}^{2}$ joules. Determine the energy when capacitance $\mathrm{C}=5 \times 10^{-6}$ farads and voltage $\mathrm{V}=240 \mathrm{~V}$
8. Find the area A of a triangle, correct to 1 decimal place, given $\mathrm{A}=\frac{1}{2} \mathrm{bh}$, when the base length b is 23.42 m and the height h is 53.7 m
9. Resistance \mathbf{R}_{2} is given by $\mathrm{R}_{2}=\mathrm{R}_{1}(1+\alpha \mathrm{t})$. Find R_{2}, correct to 4 significant figures, when $\mathrm{R}_{1}=220, \alpha=0.00027$ and $\mathrm{t}=75.6$
10. Density $=\frac{\text { mass }}{\text { volume }}$. Find the density, correct to 4 significant figures, when the mass is 2.462 kg and the volume is $173 \mathrm{~cm}^{3}$. Give the answer in units of $\mathrm{kg} / \mathrm{m}^{3}$. Note that $1 \mathrm{~cm}^{3}=10^{-6} \mathrm{~m}^{3}$
11. Evaluate resistance R_{T}, correct to 4 significant figures, given $\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$ when $\quad \mathrm{R}_{1}=5.5 \Omega, \quad \mathrm{R}_{2}=7.42 \Omega \quad$ and $\mathrm{R}_{3}=12.6 \Omega$
12. The potential difference, V volts, available at battery terminals is given by $\mathrm{V}=\mathrm{E}-$ Ir. Evaluate V when $\mathrm{E}=5.62, \mathrm{I}=0.70$ and $R=4.30$
13. The current I amperes flowing in a number of cells is given by $I=\frac{n E}{R+n r}$. Evaluate the current, correct to 3 significant figures, when $\mathrm{n}=36 . \mathrm{E}=2.20, \mathrm{R}=2.80$ and $\mathrm{r}=0.50$
14. Energy, E joules, is given by the formula $\mathrm{E}=\frac{1}{2} \mathrm{LI}^{2}$. Evaluate the energy when $\mathrm{L}=5.5 \mathrm{H}$ and $\mathrm{I}=1.2 \mathrm{~A}$
15. The current I amperes in an a.c. circuit is given by $\mathrm{I}=\frac{\mathrm{V}}{\sqrt{\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)}}$. Evaluate the
current, correct to 4 significant figures, when $\mathrm{V}=250 \mathrm{~V}, \mathrm{R}=11.0 \Omega$ and $\mathrm{X}=16.2 \Omega$

1.2 Fractions

An example of a fraction is $\frac{2}{3}$ where the top line, i.e. the 2 , is referred to as the numerator and the bottom line, i.e. the 3 , is referred to as the denominator.

A proper fraction is one where the numerator is smaller than the denominator, examples being $\frac{2}{3}, \frac{1}{2}, \frac{3}{8}$, $\frac{5}{16}$, and so on.
An improper fraction is one where the denominator is smaller than the numerator, examples being $\frac{3}{2}, \frac{2}{1}, \frac{8}{3}$, $\frac{16}{5}$, and so on.
Addition of fractions is demonstrated in the following worked problems.

Problem 8. Evaluate A, given $A=\frac{1}{2}+\frac{1}{3}$
The lowest common denominator of the two denominators 2 and 3 is 6 , i.e. 6 is the lowest number that both 2 and 3 will divide into.
Then $\frac{1}{2}=\frac{3}{6}$ and $\frac{1}{3}=\frac{2}{6}$ i.e. both $\frac{1}{2}$ and $\frac{1}{3}$ have the common denominator, namely 6 .
The two fractions can therefore be added as:

$$
\mathbf{A}=\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}=\frac{3}{6}+\frac{2}{6}=\frac{3+2}{6}=\frac{\mathbf{5}}{\mathbf{6}}
$$

Problem 9. Evaluate A, given $A=\frac{2}{3}+\frac{3}{4}$
A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4=12$
The two fractions can now be made equivalent,
i.e. $\frac{2}{3}=\frac{8}{12}$ and $\frac{3}{4}=\frac{9}{12}$
so that they can be easily added together, as follows:

$$
\begin{aligned}
& \mathrm{A}=\frac{2}{3}+\frac{3}{4} & =\frac{8}{12}+\frac{9}{12}=\frac{8+9}{12}=\frac{17}{12} \\
\text { i.e. } & \mathrm{A} & =\frac{\mathbf{2}}{\mathbf{3}}+\frac{\mathbf{3}}{\mathbf{4}}=\mathbf{1} \frac{\mathbf{5}}{\mathbf{1 2}}
\end{aligned}
$$

Problem 10. Evaluate A, given $A=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}$
A suitable common denominator can be obtained by multiplying $6 \times 7=42$, and all three denominators divide exactly into 42 .
Thus, $\quad \frac{1}{6}=\frac{7}{42}, \frac{2}{7}=\frac{12}{42}$ and $\frac{3}{2}=\frac{63}{42}$
Hence, $\quad A=\frac{1}{6}+\frac{2}{7}+\frac{3}{2}=\frac{7}{42}+\frac{12}{42}+\frac{63}{42}$

$$
=\frac{7+12+63}{42}=\frac{82}{42}=\frac{41}{21}
$$

i.e. $\quad \mathbf{A}=\frac{\mathbf{1}}{\mathbf{6}}+\frac{\mathbf{2}}{\mathbf{7}}+\frac{\mathbf{3}}{\mathbf{2}}=\mathbf{1} \frac{\mathbf{2 0}}{\mathbf{2 1}}$

Problem 11. Determine A as a single fraction, given $A=\frac{1}{x}+\frac{2}{y}$

A common denominator can be obtained by multiplying the two denominators together, i.e. xy
Thus, $\frac{1}{x}=\frac{y}{x y}$ and $\frac{2}{y}=\frac{2 x}{x y}$
Hence, $A=\frac{1}{x}+\frac{2}{y}=\frac{y}{x y}+\frac{2 x}{x y}$ i.e. $A=\frac{\mathbf{y}+\mathbf{2 x}}{\mathbf{x y}}$

Note that addition, subtraction, multiplication and division of fractions may be determined using a calculator. Locate the $\frac{\square}{\square}$ and $\square \frac{\square}{\square}$ functions on your calculator (the latter function is a shift function found above the $\frac{\square}{\square}$ function) and then check the following worked problems.

Problem 12. Evaluate $\frac{1}{4}+\frac{2}{3}$ using a calculator
(i) Press $\frac{\square}{\square}$ function
(ii) Type in 1
(iii) Press \downarrow on the cursor key and type in 4
(iv) $\frac{1}{4}$ appears on the screen
(v) Press \rightarrow on the cursor key and type in +
(vi) Press $\frac{\square}{\square}$ function
(vii) Type in 2
(viii) Press \downarrow on the cursor key and type in 3
(ix) Press \rightarrow on the cursor key
(x) Press $=$ and the answer $\frac{11}{12}$ appears
(xi) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 0.9166666....
Thus, $\frac{\mathbf{1}}{\mathbf{4}}+\frac{\mathbf{2}}{\mathbf{3}}=\frac{\mathbf{1 1}}{\mathbf{1 2}}=\mathbf{0 . 9 1 6 7}$ as a decimal, correct to 4 decimal places.

It is also possible to deal with mixed numbers on the calculator.
Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears.
Problem 13. Evaluate $5 \frac{1}{5}-3 \frac{3}{4}$ using a calculator
(i) Press Shift then the $\frac{\square}{\square}$ function and $\square \frac{\square}{\square}$ appears on the screen
(ii) Type in 5 then \rightarrow on the cursor key
(iii) Type in 1 and \downarrow on the cursor key
(iv) Type in 5 and $5 \frac{1}{5}$ appears on the screen
(v) Press \rightarrow on the cursor key
(vi) Type in - and then press Shift then the $\frac{\square}{\square}$ function and $5 \frac{1}{5}-\square \frac{\square}{\square}$ appears on the screen
(vii) Type in 3 then \rightarrow on the cursor key
(viii) Type in 3 and \downarrow on the cursor key
(ix) Type in 4 and $5 \frac{1}{5}-3 \frac{3}{4}$ appears on the screen
(x) Press $=$ and the answer $\frac{29}{20}$ appears
(xi) Press shift and then $S \Leftrightarrow D$ function and $1 \frac{9}{20}$ appears
(xii) Press $\mathrm{S} \Leftrightarrow \mathrm{D}$ function and the fraction changes to a decimal 1.45

Thus, $\mathbf{5} \frac{\mathbf{1}}{\mathbf{5}}-\mathbf{3} \frac{\mathbf{3}}{\mathbf{4}}=\frac{\mathbf{2 9}}{\mathbf{2 0}}=\mathbf{1} \frac{\mathbf{9}}{\mathbf{2 0}}=\mathbf{1 . 4 5}$ as a decimal

Now try the following Practice Exercise

Practice Exercise 3 Fractions (Answers on page 881)

In problems 1 to 3 , evaluate the given fractions

1. $\frac{1}{3}+\frac{1}{4}$
2. $\frac{1}{5}+\frac{1}{4}$
3. $\frac{1}{6}+\frac{1}{2}-\frac{1}{5}$

In problems 4 and 5, use a calculator to evaluate the given expressions
4. $\frac{1}{3}-\frac{3}{4} \times \frac{8}{21}$
5. $\frac{3}{4} \times \frac{4}{5}-\frac{2}{3} \div \frac{4}{9}$
6. Evaluate $\frac{3}{8}+\frac{5}{6}-\frac{1}{2}$ as a decimal, correct to 4 decimal places.
7. Evaluate $8 \frac{8}{9} \div 2 \frac{2}{3}$ as a mixed number.
8. Evaluate $3 \frac{1}{5} \times 1 \frac{1}{3}-1 \frac{7}{10}$ as a decimal,
9. Determine $\frac{2}{x}+\frac{3}{y}$ as a single fraction.

1.3 Percentages

Percentages are used to give a common standard. The use of percentages is very common in many aspects of commercial life, as well as in engineering. Interest rates, sale reductions, pay rises, exams and VAT are all examples where percentages are used.

Percentages are fractions having 100 as their denominator.

For example, the fraction $\frac{40}{100}$ is written as 40% and is read as 'forty per cent'.
The easiest way to understand percentages is to go through some worked examples.

Problem 14. Express 0.275 as a percentage

$$
0.275=0.275 \times 100 \%=\mathbf{2 7 . 5} \%
$$

Problem 15. Express 17.5% as a decimal number

$$
17.5 \%=\frac{17.5}{100}=\mathbf{0 . 1 7 5}
$$

Problem 16. Express $\frac{5}{8}$ as a percentage

$$
\frac{5}{8}=\frac{5}{8} \times 100 \%=\frac{500}{8} \%=\mathbf{6 2 . 5} \%
$$

Problem 17. In two successive tests a student gains marks of 57/79 and 49/67. Is the second mark better or worse than the first?

$$
\begin{aligned}
57 / 79 & =\frac{57}{79}=\frac{57}{79} \times 100 \%=\frac{5700}{79} \% \\
& =\mathbf{7 2 . 1 5} \% \text { correct to } 2 \text { decimal places. }
\end{aligned}
$$

$$
\begin{aligned}
49 / 67 & =\frac{49}{67}=\frac{49}{67} \times 100 \%=\frac{4900}{67} \% \\
& =\mathbf{7 3 . 1 3} \% \text { correct to } 2 \text { decimal places }
\end{aligned}
$$

Hence, the second test mark is marginally better than the first test.

This question demonstrates how much easier it is to compare two fractions when they are expressed as percentages.

Problem 18. Express 75% as a fraction

$$
75 \%=\frac{75}{100}=\frac{\mathbf{3}}{\mathbf{4}}
$$

The fraction $\frac{75}{100}$ is reduced to its simplest form by cancelling, i.e. dividing numerator and denominator by 25.

Problem 19. Express 37.5% as a fraction

$$
\begin{aligned}
37.5 \% & =\frac{37.5}{100} \\
& =\frac{375}{1000} \text { by multiplying numerator }
\end{aligned}
$$

and denominator by 10
$=\frac{15}{40}$ by dividing numerator
\quad and denominator by 25
$=\frac{\mathbf{3}}{\mathbf{8}}$ by dividing numerator
\quad and denominator by 5

Problem 20. Find 27% of $£ 65$
27% of $£ 65=\frac{27}{100} \times 65=£ 17.55$ by calculator

Problem 21. A 160 GB iPod is advertised as costing $£ 190$ excluding VAT. If VAT is added at 20%, what will be the total cost of the iPod?

$$
\mathrm{VAT}=20 \% \text { of } £ 190=\frac{20}{100} \times 190=£ 38
$$

$$
\text { Total cost of iPod }=£ 190+£ 38=£ \mathbf{2 2 8}
$$

A quicker method to determine the total cost is: $1.20 \times £ 190=£ \mathbf{2 2 8}$

Problem 22. Express 23 cm as a percentage of 72 cm , correct to the nearest 1%

23 cm as a percentage of 72 cm

$$
\begin{aligned}
& =\frac{23}{72} \times 100 \%=31.94444 \ldots \ldots \% \\
& =\mathbf{3 2} \% \text { correct to the nearest } 1 \%
\end{aligned}
$$

Problem 23. A box of screws increases in price from $£ 45$ to $£ 52$. Calculate the percentage change in cost, correct to 3 significant figures.

$$
\begin{aligned}
\% \text { change } & =\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \% \\
& =\frac{52-45}{45} \times 100 \%=\frac{7}{45} \times 100=\mathbf{1 5 . 6 \%} \\
& =\text { percentage change in cost }
\end{aligned}
$$

Problem 24. A drilling speed should be set to $400 \mathrm{rev} / \mathrm{min}$. The nearest speed available on the machine is $412 \mathrm{rev} / \mathrm{min}$. Calculate the percentage over-speed.

